DEMENSION AND MEASURE

JUSSI VÄISÄLÄ

ABSTRACT. We give a new characterization, based on Hausdorff measure, for the dimension of a compact set in a euclidean space.

The demension $\text{dem} \ X$ (dimension of embedding) of a compact set X in a euclidean space \mathbb{R}^n was introduced by Štan’ko [4] to characterize the tameness of X in \mathbb{R}^n. A good exposition of the theory has been given by Edwards [1]. There are several equivalent definitions for $\text{dem} \ X$ (see [1, §1.2] and Štan’ko’s original definition [4, §1.1]). In this note we give a measure-theoretic characterization of $\text{dem} \ X$, which is an analogue of the theorem of Szpilrajn (= Marczewski) concerning $\text{dim} \ X$ [2, Theorem VII 1, p. 102].

We let $m_\alpha(X)$ denote the α-dimensional Hausdorff measure of a set $X \subseteq \mathbb{R}^n$ and $\text{dim}_H X$ the Hausdorff dimension of X. For definitions, see [2, pp. 103, 107].

THEOREM. Let X be a compact set in \mathbb{R}^n. Then $\text{dem} \ X < k$ if and only if there is a homeomorphism $f : \mathbb{R}^n \to \mathbb{R}^n$ such that $m_{k+1}(fX) = 0$. Moreover, $\text{dem} \ X \leq \text{dim}_H fX$ for all homeomorphisms $f : \mathbb{R}^n \to \mathbb{R}^n$, and $\text{dem} \ X = \text{dim}_H fX$ for some f.

Proof. If $m_{k+1}(fX) = 0$ for some homeomorphism $f : \mathbb{R}^n \to \mathbb{R}^n$, then $\text{dem} fX < k$ by [3, 6.15]. Since $\text{dem} X$ is invariant under homeomorphisms of \mathbb{R}^n [1, §1.1], this implies $\text{dem} X < k$.

To complete the proof of the theorem, it suffices to construct a compact set $P^k_n \subseteq \mathbb{R}^n$ such that $\text{dim}_H P^k_n < k$ and such that for every compact set $X \subseteq \mathbb{R}^n$ with $\text{dem} X < k$ there is a homeomorphism $f : \mathbb{R}^n \to \mathbb{R}^n$ which maps X into P^k_n. We shall construct P^k_n by modifying the construction of Menger’s compactum M^k_n.

We start with the unit cube $I^n = [0, 1]^n$. Subdivide I^n into 4^n cubes of side length $\frac{1}{4}$ and retain those which meet the k-faces of I^n. These will be called cubes of rank one. Proceeding inductively, assume that Q is a cube of rank $j - 1$. Subdivide Q into $2^{(j+1)n}$ equal cubes. Those which meet the k-faces of Q are called cubes of rank j. Let S_j be the union of all cubes of rank j. Then $P^k_n = \bigcap \{S_j | j > 1\}$.

We next show that $\text{dim}_H P^k_n < k$, that is, $m_\alpha(P^k_n) = 0$ for every $\alpha > k$. Let r be the number of all k-faces of I^n. Since each cube of rank $j - 1$ contains at most $2^{(j+1)k}r$ cubes of rank j, there are at most $2^k \times 2 \times 2 \times \cdots \times 2 \times 2 \times 2$ cubes of rank j. Hence, $m_\alpha(P^k_n) = 0$ for every $\alpha > k$.
cubes of rank \(j \). The side length of such a cube is \(2^{-j(\alpha+3)/2} \). Hence these cubes form a cover \(\{ Q_1, \ldots, Q_s \} \) of \(P_n^k \) such that
\[
\sum_{i=1}^{s} d(Q_i)^{\alpha} \leq \left(2^{(k-\alpha)(\alpha+3)/2} r \right) \gamma_n^{\alpha/2}.
\]
Since \(\alpha > k \), the right-hand side tends to zero as \(j \rightarrow \infty \). Thus \(m_{\alpha}(P_n^k) = 0 \).

Suppose that \(X \) is compact in \(\mathbb{R}^n \) and \(\text{dem} \ X < k \). By a result of Štan’ko [5] (see also Edwards [1, §1.2]), there is a homeomorphism \(f: \mathbb{R}^n \rightarrow \mathbb{R}^n \) (in fact, an isotopy of \(\mathbb{R}^n \) with compact support) which carries \(X \) into Menger’s compactum \(M_n^k \). It is easy to see that \(M_n^k \) can be replaced by \(P_n^k \) in the proof of this result. □

Remarks. There is an isotopy version of the above result, since the map \(f \) in the proof can be obtained by an isotopy of \(\mathbb{R}^n \) with compact support. In fact, the isotopy can be chosen to be arbitrarily small by using a stack of small copies of \(P_n^k \) (cf. Edwards [1, pp. 208–209]).

The result can be extended to closed subsets of Lipschitz manifolds (cf. [1, §2]).

References