Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Majorization on a partially ordered set

Author: F. K. Hwang
Journal: Proc. Amer. Math. Soc. 76 (1979), 199-203
MSC: Primary 06A10; Secondary 26B35
MathSciNet review: 537073
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We extend the classical concept of set majorization to the case where the set is partially ordered. We give a useful property which characterizes majorization on a partially ordered set. Quite unexpectedly, the proof of this property relies on a theorem of Shapley on convex games. We also give a theorem which is parallel to the Schur-Ostrowski theorem in comparing two sets of parameters in a function.

References [Enhancements On Off] (What's this?)

  • [1] F. R. K. Chung and F. K. Hwang, On blocking probabilities on a class of linear graphs, Bell System Tech. J. 57 (1978), 2915-2925. MR 508235 (80j:94046)
  • [2] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, 2nd ed., Cambridge Univ. Press, New York, 1959.
  • [3] F. K. Hwang, Generalized Huffman trees, SIAM J. Appl. Math. (to appear). MR 536306 (81a:05037)
  • [4] A. Ostrowski, Sur quelques applications des fonctions convexes et concaves au sens de I. Schur, J. Math. Pures Appl. 31 (1952), 253-292. MR 0052475 (14:625d)
  • [5] I. Schur, Über ein Klasse von Mittelbildungen mit Anwendungen auf die Determinantentheorie, Sitzungsber. Berlin. Math. Ges. 22 (1923), 9-20.
  • [6] L. S. Shapley, Cores of convex games, Internat. J. Game Theory 1 (1971), 11-26. MR 0311338 (46:10430)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 06A10, 26B35

Retrieve articles in all journals with MSC: 06A10, 26B35

Additional Information

Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society