Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Periodic modules with large periods


Author: Jon F. Carlson
Journal: Proc. Amer. Math. Soc. 76 (1979), 209-215
MSC: Primary 20C05
DOI: https://doi.org/10.1090/S0002-9939-1979-0537075-4
MathSciNet review: 537075
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let G be a nonabelian group of order $ {p^3}$ and exponent p, where p is an odd prime. Let K be a field of characteristic p. In this paper it is proved that there exist periodic KG-modules whose periods are 2p. Some examples of such modules are constructed.


References [Enhancements On Off] (What's this?)

  • [1] J. L. Alperin, Perodicity in groups, Illinois J. Math. 21 (1977), 776-783. MR 0450381 (56:8676)
  • [2] J. F. Carlson, The dimensions of periodic modules over modular group algebras, Illinois J. Math. (to appear). MR 528565 (80d:20007)
  • [3] C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience, New York, 1966. MR 0144979 (26:2519)
  • [4] D. Eisenbud, Homological algebra on a complete intersection, with an application to group representations (to appear). MR 570778 (82d:13013)
  • [5] A. Heller, Indecomposable representations and the loop-space operation, Proc. Amer. Math. Soc. 12 (1961), 460-463. MR 0126480 (23:A3776)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20C05

Retrieve articles in all journals with MSC: 20C05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0537075-4
Keywords: Periodic modules, modular group algebras
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society