Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the rigidity of graded algebras


Author: Jane Purcell Coffee
Journal: Proc. Amer. Math. Soc. 76 (1979), 219-222
MSC: Primary 16A58; Secondary 16A03
DOI: https://doi.org/10.1090/S0002-9939-1979-0537077-8
MathSciNet review: 537077
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $ \mathcal{G}$ is a graded algebra (separated and complete) over a field of characteristic zero and $ \mathcal{G}$ is rigid in the category of algebras, then $ \mathcal{G}$ is rigid in the category of filtered algebras.


References [Enhancements On Off] (What's this?)

  • [1] J. P. Coffee, Filtered and associated graded rings, Bull. Amer. Math. Soc. 78 (1972), 584-587. MR 0297815 (45:6867)
  • [2] M. Gerstenhaber, On the deformation of rings and algebras, Ann. of Math. 79 (1964), 59-103. MR 0171807 (30:2034)
  • [3] -, On the deformation of rings and algebras. II, Ann. of Math. 84 (1966), 1-19. MR 0207793 (34:7608)
  • [4] -, On the deformation of rings and algebras. III, Ann. of Math. 88 (1968), 1-34. MR 0240167 (39:1521)
  • [5] -, On the deformation of rings and algebras. IV, Ann. of Math. 99 (1974), 257-276. MR 0389978 (52:10807)
  • [6] G. Hochschild, On the cohomology groups of an associative algebra, Ann. of Math. 46 (1945), 58-67. MR 0011076 (6:114f)
  • [7] U. Shukla, Cohomologie des algèbres associatives, Ann. Sci. École Norm. Sup. Pisa 78 (1961), 163-209. MR 0132769 (24:A2605)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A58, 16A03

Retrieve articles in all journals with MSC: 16A58, 16A03


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0537077-8
Keywords: Filtered algebras, associated graded algebras, algebraic deformations
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society