Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Stable range in $ AW\sp{\ast} $ algebras


Author: David Handelman
Journal: Proc. Amer. Math. Soc. 76 (1979), 241-249
MSC: Primary 46L10; Secondary 16A45
DOI: https://doi.org/10.1090/S0002-9939-1979-0537081-X
MathSciNet review: 537081
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show all finite $ A{W^\ast}$ algebras (and somewhat more general $ {C^\ast}$ algebras) satisfy a stronger property than having 1 in their stable range.


References [Enhancements On Off] (What's this?)

  • [1] H. Bass, Algebraic K-theory, Benjamin, New York, 1968. MR 0249491 (40:2736)
  • [2] S. K. Berberian, Baer $ ^\ast$ rings, Springer-Verlag, Berlin and New York, 1972. MR 0429975 (55:2983)
  • [3] P. A. Fillmore and J. P. Williams, On operator ranges, Advances in Math. 7 (1971), 254-281. MR 0293441 (45:2518)
  • [4] B. Fuglede and R. V. Kadison, Determinant theory in finite factors, Ann. of Math. (2) 55 (1952), 520-530. MR 0052696 (14:660a)
  • [5] W. H. Gustafson, P. R. Halmos and H. Radjavi, Products of involutions, Linear Algebra and Appl. 13 (1976), 157-162. MR 0399284 (53:3135)
  • [6] L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, N. J., 1960. MR 0116199 (22:6994)
  • [7] C. Lanski, The group of units of a simple ring. II, J. Algebra 16 (1970), 108-128. MR 0269691 (42:4586)
  • [8] J.-I. Nagata, Modern dimension theory, Wiley, New York, 1965. MR 0208571 (34:8380)
  • [9] L. N. Vaserštein, Stable rank of rings and dimensionality of topological spaces, Functional Anal. Appl. 5 (1971), 102-110.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L10, 16A45

Retrieve articles in all journals with MSC: 46L10, 16A45


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0537081-X
Keywords: Unitary decomposition, $ {K_1}$, F-space, dimension of a topological space, cancellation property for finitely generated projective modules
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society