Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Most similarity orbits are strongly dense


Authors: D. W. Hadwin, E. A. Nordgren, Heydar Radjavi and Peter Rosenthal
Journal: Proc. Amer. Math. Soc. 76 (1979), 250-252
MSC: Primary 47A65; Secondary 47A15
DOI: https://doi.org/10.1090/S0002-9939-1979-0537082-1
MathSciNet review: 537082
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that the strong and weak closures of the similarity orbit of an operator on a Banach space always coincide, and a simple characterization of these closures is given. Whenever an operator is not the sum of a scalar and a finite rank operator, its similarity orbit is strongly dense in the set of all bounded linear operators.


References [Enhancements On Off] (What's this?)

  • [E] P. Enflo, On the invariant subspace problem in Banach spaces, Séminaire Maurey-Schwartz 1975-1976: Espaces $ {L^p}$, applications radonifiantes et géométrie des espaces de Banach, Exposés Nos. 14-15, Centre Math., Ecole Polytech., Palaiseau, 1976, 6 pp. MR 0473871 (57:13530)
  • [H1] D. W. Hadwin, An operator-valued spectrum, Indiana Univ. Math. J. 26 (1978), 329-340. MR 0428089 (55:1118)
  • [H2] -, Approximate equivalence and completely positive maps, preprint, 1978.
  • [HNRR] D. W. Hadwin, E. Nordgren, Heydar Radjavi and Peter Rosenthal, An operator not satisfying Lomonosov's hypothesis, preprint, 1978.
  • [PRH1] P. R. Halmos, Irreducible operators, Michigan Math. J. 15 (1968), 215-223. MR 0231233 (37:6788)
  • [PRH2] -, A Hilbert space problem book, Van Nostrand, Princeton, N. J., 1967. MR 0208368 (34:8178)
  • [He1] D. A. Herrero, Closure of similarity orbits of Hilbert space operators. III, Math. Ann. 232 (1978), 195-204. MR 0512775 (58:23695c)
  • [He2] -, Closure of similarity orbits of Hilbert space operators. V. Essentially BQT operators (preprint).
  • [V] D. Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roumaine Math. Pures Appl. 21 (1976), 97-113. MR 0415338 (54:3427)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A65, 47A15

Retrieve articles in all journals with MSC: 47A65, 47A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0537082-1
Keywords: Banach space, operator, similarity orbit, weak and strong operator topologies, finite rank operator
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society