THE SOLVABILITY OF OPERATOR EQUATIONS WITH
ASYMPTOTIC QUASIBOUNDED NONLINEARITIES

P. S. MILOJEVIĆ

Abstract. We study the solvability of operator equations involving quasi-bounded and asymptotically quasibounded nonlinear perturbations of linear Fredholm operators.

1. Let X and Y be Banach spaces, $L: X \to Y$ a linear Fredholm map of nonnegative index and $N: X \to Y$ a compact map. The operator equation of the form

$$Tx = Ax + Nx = f$$

has been extensively studied by many authors in recent years. Under various growth conditions on N, the surjectivity of T has been proven in a number of papers (see [4], [5], [7] and the references therein).

Alternatively, beginning with a paper of Landesman and Lazer [6], much work has been done on the solvability of equation (1) for a certain range of values of Pf, where P is the projection of Y on the cokernel of A. Using the stable homotopy arguments, Nirenberg [9], [10], Berger [1], Mawhin [8], Podolak [11], Borisovich, Zvyagin and Sapronov [2] and others have studied equation (1). The alternative method has also been used to study equation (1) (with noncompact N too) in a series of papers by Cesari and his coworkers, Fučík, Kučera and Nečas [5], and many others (cf. the survey paper by Cesari [3] and the monograph by Berger [1] for contributions of other authors). In all these papers (except in [2], [7], [11]) N is assumed to have less than linear or linear growth.

In [2] and [11] the authors have studied equation (1) under the assumption that N is asymptotically linear or asymptotically Lipschitz (i.e., B in Definition 1 below is a Lipschitz map), respectively. In a series of papers Mawhin (cf. [7], [8]) has studied equation (1) with $f \in R(A)$ involving certain quasi-bounded maps N using his coincidence degree.

In this paper we study the surjectivity of T with N either quasibounded or asymptotically quasibounded as defined below. Moreover, in case when the index of A, $i(A)$, is zero we provide a new growth condition on $PN|_{\ker A}$ that insures the solvability of equation (1) with these types of nonlinearities N. In the proofs of our main results we use a special case of the degree theory for
compact perturbations of nonlinear C^1-Fredholm maps as developed in [2] or, equivalently, the stable homotopy arguments since for our map T this degree can be defined in terms of elements of the stable homotopy group $\pi_{n+m}(S^n)$ (see [1], [2], [9]).

2. Set $X_1 = \ker A$ and $Y_2 = A(X)$. Since A is Fredholm, $\dim X_1 = n < \infty$ and Y_2 is closed we have the following direct sum decompositions: $X = X_1 \oplus X_2$ and $Y = Y_1 \oplus Y_2$ with $\dim Y_1 = m < \infty$ and $\text{ind}(A) = n - m > 0$. Define a new norm on X by

$$\|x\|_1 = \max\{\|x_1\|, \|x_2\|\},$$

where $x = x_1 + x_2$ with $x_i \in X_i$, $i = 1, 2$. Let $P: Y \to Y_1$ be a linear continuous projection onto Y_1, H be the inverse of the linear homeomorphism $A|_{X_2}$; $X_2 \to Y_2$ and $\alpha = \|H\|$.

Theorem 1. Suppose that for a given f in Y the following conditions hold:

1. There exist constants $M_f > 0$ and $N_f > 0$ such that $PN(x_1 + x_2) - tf_1 \neq 0$ for $\|x_2\| < r$, $r > N_f$, $\|x_1\| > rM_f$ and $t \in [0, 1]$;
2. $M = H(I - P)N$ is quasibounded, i.e.,

$$|M| = \limsup_{\|x\|_1 \to \infty} \frac{\|Mx\|}{\|x\|_1} < \infty$$

and $|M|\max\{1, M_f\} < 1$;
3. The stable homotopy class η_p of $PN|S_p^{n-1}$: $S_p^{n-1} \to Y_1 \setminus \{0\}$, $p > rM_f$, is nontrivial, where $S_p^{n-1} \subset X_1$ is a sphere of radius p.

Then equation (1) is solvable for this f.

Proof. Let $e > 0$ be small. By (2) there exists $R > N_f$ such that

$$\|Mx\| = \|H(I - P)Nx\| < (|M| + \epsilon)\|x\|_1,$$

for all $\|x\|_1 > R$. Moreover, there exists an $r > R$ such that $Ax + t(I - P)Nx - tf_2 \neq 0$ for all $x = x_1 + x_2$ with $\|x_1\| < rM_f$ and $\|x_2\| = r$ and $t \in [0, 1]$. If not, then for each $r > R$ there exist $t \in [0, 1]$ and x with $\|x_1\| < rM_f$ and $\|x_2\| = r$ such that $Ax_2 + t(I - P)Nx - tf_2 = 0$, and therefore

$$\|x_2\| < \|H(I - P)Nx\| + \alpha\|f_2\| < (|M| + \epsilon)\|x\|_1 + \alpha\|f_2\|,$$

or

$$1 < \frac{1}{r}(|M| + \epsilon)\|x\|_1 + \frac{\alpha}{r}\|f_2\| < (|M| + \epsilon)\max\{1, M_f\} + \frac{\alpha}{r}\|f_2\|.$$

Passing to the limit as $r \to \infty$, we obtain $1 < (|M| + \epsilon)\max\{1, M_f\}$ which is in contradiction with condition (2) for ϵ small enough. Hence, an r with the above property exists.

Next, we define $D = \{x = x_1 + x_2 \in X \mid \|x_1\| < rM_f, \|x_2\| < r\}$ with r chosen as above, and define the homotopy $H: [0, 1] \times D \to Y$ by

$$H(t, x) = (Ax + t(I - P)Nx - tf_2, PN(x_1 + tx_2) - tf_1).$$
We claim that \(H(t, x) \neq 0 \) for \(t \in [0, 1] \) and \(x \in \partial D \). Indeed, if \(x \in \partial D \) is such that \(\|x_2\| < r \), then \(\|x_1\| = rM_f \) and by (1), \(PN(x_1 + tx_2) - tf_1 \neq 0 \) for all \(t \in [0, 1] \). If \(x \in \partial D \) is such that \(\|x_1\| < rM_f \), then \(\|x_2\| = r \) and \(Ax + t(I - P)Nx - tf_2 \neq 0 \) for all \(t \in [0, 1] \). Thus, by the homotopy theorem in [2],

\[
\deg(A + N - f, \overline{D}, 0) = \deg(H_0, \overline{D}, 0) = \eta_r,
\]
which, by the solvability property of this degree, implies that \(Ax + Nx = f \) for some \(x \in D \). □

To treat a larger class of nonlinear maps \(N \), we need:

Definition 1. A map \(A: X \rightarrow Y \) is said to be **asymptotically quasibounded** if there exists a nonzero continuous quasibounded map \(B: X \rightarrow Y \), i.e.,

\[
|B| = \limsup_{\|x\| \rightarrow \infty} \frac{\|Bx\|}{\|x\|} < \infty
\]

such that

(A) \(\lim_{R \rightarrow \infty} N(Rx)/R = B(x) \) uniformly on bounded sets in \(X \).

Such maps with \(B \) Lipschitz have been studied by Podolak [11].

Theorem 1 admits the following extension:

Theorem 2. Suppose that \(N \) satisfies condition (A) and that \(B \) is continuous, satisfies conditions (1) and (3) of Theorem 1 for \(f = 0 \) and that the following condition holds:

(2') \(K = H(I - P)B \) is quasibounded, i.e.,

\[
|K| = \limsup_{\|x\| \rightarrow \infty} \frac{\|Kx\|}{\|x\|} < \infty
\]

and \(|K|\max\{1, M_0\} < 1 \).

Then equation (1) is solvable for each \(f \) in \(Y \).

Proof. Since for each \(f \) in \(Y \), \(N_f x = Nx - f \) satisfies condition (A) with the same \(B \), it is sufficient to consider the case \(f = 0 \). Define

\[
\overline{D} = \{x = x_1 + x_2 \in X \mid \|x_1\| < rM_f, \|x_2\| < r\},
\]

where \(r \) is chosen as in Theorem 1 using property (2') of \(K \). For \(R > 0 \), define the map \(H_R: \overline{D} \rightarrow Y \) by

\[
H_R(x) = (1/R)(A(Rx) + (I - P)N(Rx), PN(Rx))
\]

and the homotopy \(H: [0, 1] \times \overline{D} \rightarrow Y \) by

\[
H(t, x) = (Ax + t(I - P)Bx, PB(x_1 + tx_2)).
\]

By our choice of \(r \) we know that \(H(t, x) \neq 0 \) for \(t \in [0, 1] \) and \(x \in \partial D \). Clearly, if \(x \in X \) is a solution of equation (1), then \(u = x/R \in D \) is a solution of \(H_R(u) = 0 \) for \(R \) sufficiently large, and conversely. Moreover, \(\lim_{R \rightarrow \infty} H_R(x) = H(1, x) \) uniformly for \(x \in D \) with \(\|H(1, x)\| > \varepsilon > 0 \) for all \(x \in \partial D \) since \(H(1, \cdot) \) is a proper map. In view of this, it follows that for sufficiently large \(R \), \(H_R(x) \neq 0 \) on \(\partial D \) and

\[
F_R(t, x) = H(1, x) + t(H_R(x) - H(1, x)) \neq 0
\]
for \(t \in [0, 1] \) and \(x \in \partial \mathbb{D} \). The compactness of \(N \) and condition (A) imply that \(B \) is compact and consequently

\[
F_R(t, x) = Ax + (1 - t)Bx + tN(Rx)/R
\]

is an admissible homotopy on \([0, 1] \times \mathbb{D}\) (cf. (4.2) in [2]). Hence,

\[
\deg(H_R, \mathbb{D}, 0) = \deg(H(1, \cdot), \mathbb{D}, 0) = \deg(H(0, \cdot), \mathbb{D}, 0) = \eta_r
\]

which implies that the equation \(H_R(x) = 0 \) is solvable in \(\mathbb{D} \). \(\Box \)

Remark. When \(A \) is asymptotically linear, i.e., \(A(x) = B(x) + w(x), x \in X \), for some continuous and linear map \(B: X \to Y \) with \(w(x)/\|x\| \to 0 \) as \(\|x\| \to \infty \), then \(N \) is quasibounded with \(|N| = \|B\| \). Hence, Theorem 1 extends Theorem 4.5 in [2], which is, on the other hand, an abstract extension of some results of Nirenberg [9] involving everywhere bounded nonlinearities \(N \). Other extensions of Nirenberg’s results to sublinear or quasibounded nonlinearities are given in [1, 4], [5], [7], [8] (cf. [1] for other references).

Remark. If \(B \) in condition (A) is Lipschitz, i.e., \(\|Bx - By\| < k\|x - y\| \) for all \(x, y \in X \) and some small \(k > 0 \), then condition (1) in Theorem 2 can be replaced by the following easier to verify condition of Podolak [11]:

\[
(1') \quad \|PA(a - x_0)\| > b \text{ for some positive } b \text{ and all } a \in R^n \text{ with } \|a\| = 1,
\]

where \(x_0 = \{x_{01}, \ldots, x_{0n}\} \) is a fixed basis for \(\ker A \) of unit vectors and

\[
a \cdot x_0 = a_1x_{01} + \cdots + a_nx_{0n}.
\]

In this sense Theorem 2 extends Theorem 1 in [11].

Let us now look at a new condition on \(PN|_{X_1} \) which implies that \(\deg(PN|_{X_1}, B(0, r), 0) \neq 0 \) with \(B(0, r) \subset X_1 \). Suppose that \(X \) and \(Y \) are such that there exist a map \(J: X_1 \to Y_1^* \) and a continuous and odd map \(G: X_1 \to Y_1^* \) with \(Gx \neq 0 \) for \(x \neq 0 \) and \((Gx, Jx) = \|Gx\| \cdot \|Jx\| \) for all \(x \in X_1 \). This is always so if \(Y = X \) or \(Y = X^* \). Indeed, if \(Y_1 = X_1 \), as \(G \) and \(J \) we can take the identity and the normalized duality map, respectively; while, if \(Y_1 = X_1^* \) as \(G \) and \(J \) we can take the normalized duality map and the identity, respectively. The condition in question is:

\[
(4) \quad \|PNx\| + (PNx, Jx)/\|Jx\| > 0 \text{ for } x \in \partial B(0, \rho), \rho > rM_f.
\]

Corollary 1. Let \(A \) and \(N \) satisfy conditions (1) and (2) of Theorem 1. Then, if condition (4) holds for all \(\rho > rM_f \) and the index of \(A \) is zero, equation (1) is solvable.

Proof. By Theorem 1 it suffices to show that \(\deg(PN, B(0, \rho), 0) \neq 0 \), where \(PN \) is restricted to \(\overline{B}(0, \rho) \). Define the homotopy \(H: [0, 1] \times \overline{B}(0, \rho) \to Y_1 \) by \(H(t, x) = tPNx + (1 - t)Gx \). Then \(H(t, x) \neq 0 \) for \(t \in [0, 1] \) and \(x \in \partial \mathbb{B} \). If not, then \(tPNx + (1 - t)Gx = 0 \) for some \(t \in [0, 1] \) and \(x \in \partial \mathbb{B} \). Since \(t \neq 0,1 \), we have

\[
\|PNx\| + \frac{(PNx, Jx)}{\|Jx\|} = \frac{1 - t}{t} \|Gx\| - \frac{1 - t}{t} \frac{(Gx, Jx)}{\|Jx\|} = 0
\]
in contradiction with condition (4). By the oddness of G we obtain:
\[
\deg(PN, B(0, \rho), 0) = \deg(G, B(0, \rho), 0) \neq 0. \qed
\]

Similarly, using Theorem 2, we obtain:

Corollary 2. Let K be asymptotically quasibounded and B satisfy conditions (1) and (2') of Theorem 2 with $f = 0$. Then, if $\text{ind} A = 0$ and PB satisfies condition (4) for $f = 0$, equation (1) is solvable for each f in Y.

Under a somewhat stronger condition than (4), we have:

Theorem 3. Let X and Y be Banach spaces with $\dim X = \dim Y < \infty$ and let $T: X \to Y$ be continuous and satisfy
\[
(5) \quad \|Tx\| + (Tx, Jx)/\|Jx\| \to \infty \text{ as } \|x\| \to \infty, \quad \text{where } J \text{ and } G \text{ are as above.}
\]

Then $T(X) = Y$.

Proof. Let f in Y be fixed. By condition (5) there exists an $r_f > 0$ such that
\[
\|Tx - tf\| > 0 \quad \text{for } \|x\| = r_f, \quad t \in [0, 1]
\]
and
\[
\|Tx\| + \frac{(Tx, Jx)}{\|Jx\|} > 0 \quad \text{for } \|x\| = r_f.
\]
The first inequality implies that
\[
\deg(T - f, B(0, r_f), 0) = \deg(T, B(0, r_f), 0),
\]
which is nonzero by the second inequality as shown in Corollary 1. Hence, $Tx = f$ is solvable. \qed

Remark. Along similar lines one can show that if $T: X \to X$ is continuous and compact (or condensing) and $I - T$ satisfies condition (5), then $(I - T)(X) = X$ (the proof will appear in a forthcoming paper by the author).

Condition (5) for PN clearly holds if PN is coercive on X_1, i.e.,

- if $(PNx, Jx)/\|Jx\| \to \infty$ as $\|x\| \to \infty$, $x \in X_1$, or
- if $(PNx, Jx) \geq -c_1\|Jx\|$ for all $x \in X_1$ and some $c_1 > 0$ and $\|PNx\| \to \infty$ as $\|x\| \to \infty$, $x \in X_1$, and, in particular,
- if $\|PNx\| > c_2\|x\|^k$ for all $x \in X_1$ and some $c_2 > 0$, $k > 0$.

The last condition holds if N is k-homogeneous. Indeed, since $\|PNx\| \neq 0$ for $x \in \partial B(0, r) \subset X_1$, $a = \min\{\|PNx\| : \|x\| = r\} > 0$

and $\|PNx\| > (a/r^k)\|x\|^k$ for all $\|x\| > r$.

In view of the above discussion, we have the following special case of Theorem 2.1 in [8]:

Theorem 4. Let $A: D(A) \subset X \to Y$ be a linear Fredholm map of index zero and $N: \overline{D} \subset X \to X$ a continuous compact map, where D is open and bounded. Suppose that

(i) $Ax \neq \lambdaNx$ for $x \in D(A) \cap \partial D$ and $\lambda \in (0, 1)$;
(ii) $P N x \neq 0$ for each $x \in \ker A \cap \partial D$;
(iii) for some isomorphism $L: Y_1 \to X_1$,
$$
\|LP N x\| + \frac{(LP N x, J x)}{\|J x\|} > 0 \quad \text{for} \ x \in \partial D \cap X_1
$$
with J the normalized duality map from X_1 to 2^{X_1}.

Then the equation $A x - \lambda N x = 0$ has at least one solution in D for each
$\lambda \in [0, 1]$.

Proof. It suffices to show (cf. [8]) that $\deg (LP N|_{X_1}, D \cap X_1, 0) \neq 0$. But, this follows from condition (iii) as in Corollary 1 since I is odd. □

Remark. The above results could be proven by using the homotopy
$$
H(t, x) = (x^2 + t H(I - P) N x - t f_2, PN(x_1 + t x_2) - t f_1)
$$
instead. Hence, it is sufficient to require that the map $H(I - P) N: X \to X$ be compact or condensing. The same observation holds for Theorem 2 with N replaced by B. Moreover, Theorem 2 of Podolak [11] can be shown to be valid for the nonlinearities considered in our Theorem 2.

References

Department of Mathematics, Université d’Ottawa, Ottawa, Ontario, Canada K1N 6N5

Current address: Departamento de Matemática, Universidade Federal de Minas Gerais, 30.000 Belo Horizonte, Brasil

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use