TRIVIAL EXTENSION OF A RING WITH BALANCED CONDITION

HIDEAKI SEKIYAMA

Abstract. A ring R is called QF-1 if every faithful R-module is balanced. In this paper we study commutative QF-1 rings. It is shown that a commutative QF-1 ring is local if and only if it is uniform. It is well known that commutative artinian QF-1 rings are QF, but Osofsky has constructed a nonartinian nonnoetherian commutative injective cogenerator, so QF-1, ring which is a trivial extension of a valuation ring. It is shown that if a trivial extension of a valuation ring is QF-1, then it has a nonzero socle. Furthermore such rings become injective cogenerator rings under certain conditions.

Throughout this paper rings are commutative rings with unity and modules are unital. Hence the trivial extension of a ring B by a B-module E is defined to be the ring whose additive group is the direct sum $B \oplus E$ with multiplication given by

$$(b, e) \cdot (b', e') = (bb', b'e + be').$$

An R-module M is called balanced if the canonical ring homomorphism of R into the double centralizer of M is surjective, and a ring R is said to be QF-1 if every faithful R-module is balanced. A ring R is said to be PF if R is an injective cogenerator as an R-module.

There is an interesting theorem on QF-1 rings that a commutative QF-1 artinian ring R is QF (V. P. Camillo [1] and S. E. Dickson and K. R. Fuller [3]) which has been generalized by C. M. Ringel [10], H. H. Storrer [12] and H. Tachikawa [14] under the weaker condition that R is noetherian or perfect instead of the assumption on R to be artinian.

On the other hand B. L. Osofsky [9, Example 1] has constructed a commutative nonnoetherian PF ring which is a trivial extension of a valuation ring. It is known that PF rings are QF-1, so her example distinguishes commutative QF-1 rings from QF rings. Hence trivial extension QF-1 rings of valuation rings are worthy to be considered. The purpose of this paper is to show that such a ring has a nonzero socle, which is an important necessary condition for a ring to be PF, and that it is PF under certain conditions.

V. P. Camillo [2] and H. H. Storrer [11] have proved that a commutative QF-1 ring R has the principal extension property which plays the important
role in this paper, that is, every homomorphism of any principal ideal of R into R can be extended to all of R. Furthermore M. Ikeda and T. Nakayama [7] have proved that if a ring R has the principal extension property, then every principal ideal of R satisfies the annihilator condition, that is,

$$\text{Ann}_R \text{Ann}_R(Rr) = Rr \text{ for all } r \in R.$$

Although C. M. Ringel has proved in [10] that if a commutative QF-1 ring has a nonzero socle and if it is local then it is uniform, we shall prove it by using the principal extension property without assuming the existence of a nonzero socle and prove the converse of it.

Theorem 1. A commutative QF-1 ring is local if and only if it is uniform.

Proof. At first we shall consider the case where a local commutative QF-1 ring R has a nontrivial socle. Let S be a minimal ideal. For an arbitrary nonzero element x in R, an R-module $Rx/(\text{Rad}(R))x$ is simple and isomorphic to S. Thus there exists a nonzero R-homomorphism of Rx into R whose image is S. The principal extension property means $S \subseteq Rx$. So R is uniform since S is essential in R.

Next we shall consider a local commutative QF-1 ring R with zero socle. In this case it is to be noted that the maximal ideal $W (= \text{Rad}(R))$ of R is faithful. We shall prove the fact that if x and y are nonzero elements of R with $Rx \cap Ry = 0$, then $\text{Ann}_R(x) + \text{Ann}_R(y) = R$. This implies either $\text{Ann}_R(x) = R$ or $\text{Ann}_R(y) = R$, because R is assumed to be local. Hence either x or y is zero, which contradicts the assumption that x and y are nonzero elements. So suppose that $\text{Ann}_R(x) + \text{Ann}_R(y) \neq R$. Then W contains $\text{Ann}_R(x) + \text{Ann}_R(y)$, and an R-module $R/Wx \oplus R/Wy$ is faithful and so balanced, since $Wx \cap Wy \subseteq Rx \cap Ry = 0$. We can define a nonzero map ϕ of $R/Wx \oplus R/Wy$ into $R/Wx \oplus R/Wy$ as follows $(a, b) \mapsto (xa, yb)$ for $a \in R/Wx, b \in R/Wy$, since $Rx \neq Wx$ and $Ry \neq Wy$. Every element in $\text{Hom}_R(R/Wx, R/Wy)$ is induced by some element r of R such that $Wxr \subseteq Wy$, so r annihilates x since $Wx \cap Wy = 0$ and W is faithful. Also since $Wyx \subseteq Wy \cap Wx = 0$, we have $\text{Ann}_R(x) \cap Wy$. Consequently we have

$$T(R/Wx, R/Wy) = \text{Ann}_R(x)/Wy,$$

where

$$T(R/Wx, R/Wy) = \sum \{ \text{Im}(f); f \in \text{Hom}_R(R/Wx, R/Wy) \}.$$

Thus $(x - y)T(R/Wx, R/Wy) = 0$ since $\text{Ann}_R(x) \subseteq W$. Similarly $(y - x)T(R/Wy, R/Wx) = 0$. Then by the Camillo criterion [1, 11. Lemma], ϕ is an element of the double centralizer of $R/Wx \oplus R/Wy$. So it should be induced by the multiplication with an element r of R. But then the element $(1 + Wx, 1 + Wy)$ in $R/Wx \oplus R/Wy$ is mapped onto $(r + Wx, r + Wy) = (x + Wx, y + Wy)$, thus $r - x \in Wx$ and $r - y \in Wy$, and therefore $r \in Rx \cap Ry = 0$, a contradiction.

Conversely, suppose that a commutative QF-1 ring R is uniform. We fix an arbitrary nonunit element x of R. For any element r of R, the element rx is a
nonunit. If \(\text{Ann}_{R}(rx) = 0 \), a map of \(Rrx \) into \(R \) as follows \(r'rx \mapsto r' \) for \(r' \in R \) is a well-defined \(R \)-homomorphism. By the principal extension property, there is an element \(p \in R \) such that \(prx = 1 \), which contradicts the fact that \(rx \) is a nonunit. Thus we have \(\text{Ann}_{R}(rx) \neq 0 \). Since \(R \) is uniform and \(\text{Ann}_{R}(rx) \cap \text{Ann}_{R}(1 - rx) = 0 \), we have \(\text{Ann}_{R}(1 - rx) = 0 \), so \(1 - rx \) is a unit by the above argument. We have showed that every nonunit element is in the radical of \(R \), which implies that \(R \) is local.

V. P. Camillo has proved in [1, Lemma 2] that if the direct sum of a faithful \(R \)-module \(M \) and a simple \(R \)-module \(S \) is balanced then either \(\text{Hom}_{R}(S, M) \) or \(\text{Hom}_{R}(M, S) \) is not zero. Hence it follows that if \(R \) is QF-1 and if a faithful \(R \)-module \(M \) has a zero socle, then the (Jacobson) radical \(\text{Rad}(M) \) of \(M \) is not equal to \(M \). We note that for a module \(M \) over a local ring \(R \), \(\text{Rad}(M) \) is equal to \(\text{Rad}(R) \cdot M \).

We need some definitions. A module \(E \) is called uniserial if the lattice of submodules of \(E \) is linearly ordered by inclusion, and a ring \(B \) is called a valuation ring if \(B \) is uniserial as a \(\beta \)-module. A valuation ring \(B \) is said to be maximal if every system of pairwise solvable congruences of the form

\[x \equiv x_{\alpha}(I_{\alpha}) \quad (\alpha \in A, x_{\alpha} \in B, I_{\alpha} \text{ an ideal of } B) \]

has a simultaneous solution in \(B \). We say \(B \) is almost maximal if the above congruences have a simultaneous solution whenever \(\bigcap_{\alpha \in A} I_{\alpha} \neq 0 \) (cf. C. Faith [4]).

Now, we are ready to prove our next theorem.

Theorem 2. Let \(R \) be the trivial extension ring of a valuation ring \(B \) by a nonzero \(B \)-module \(E \). If \(R \) is QF-1, then the following hold:

(a) \(E \) is faithful and uniserial;

(b) the socle of \(R \) is equal to \((0, \text{Soc}_{B}(E))\) and is not zero.

Proof. (a) \(R \) is a commutative local ring with the maximal ideal \(\text{Rad}(B), E \), and \(R \) is uniform by Theorem 1. \((\text{Ann}_{B}(E), 0) \) and \((0, E)\) are ideals with zero intersection and so, by the uniformness of \(R \), \(\text{Ann}_{B}(E) \) must be zero, that is, \(E \) is faithful.

For the second assertion it is sufficient to show that for any two elements \(x, y \) of \(E \), it holds that either \(Bx \subseteq By \) or \(Bx \supsetneq By \). Since \(B \) is a valuation ring, we may assume \(\text{Ann}_{B}(y) \) contains \(\text{Ann}_{B}(x) \). Then

\[\text{Ann}_{R}(0, x) = (\text{Ann}_{B}(x), E) \subseteq (\text{Ann}_{B}(y), E) = \text{Ann}_{R}(0, y). \]

Two principal ideals \(R(0, x) = (0, Bx) \) and \(R(0, y) = (0, By) \) satisfy the annihilator condition, so we have

\[(0, Bx) = \text{Ann}_{R}\text{Ann}_{R}(0, x) \supset \text{Ann}_{R}\text{Ann}_{R}(0, y) = (0, By), \]

which shows that \(Bx \supsetneq By \).

(b) Assume that there exists an element \((b, e)\) of \(R \) which generates a minimal ideal such that \(b \neq 0 \). Noting that \(bE \neq 0 \), we have \(R(b, e) \supsetneq (0, bE) \neq 0 \), which contradicts the minimality of \(R(b, e) \). Thus \(\text{Soc}_{R}(R) \) must be \((0, \text{Soc}_{B}(E))\).
Next we must show that R has a nonzero socle. If $\text{Soc}_B(B)$ is not zero, then we have a minimal ideal $(0, Bbe)$, where b is a generator of a minimal ideal of B and e is an element of E such that $be \neq 0$.

Thus we may assume $\text{Soc}_B(B) = 0$. Let W be the radical of B. It is to be noted that W is a faithful ideal of B.

We claim that E is not a cyclic B-module. Suppose E is cyclic with a generator e, then the ideal (W, We) of R is faithful and has a zero socle. Then we have $(W, We) \neq \text{Rad}(W, We) = (W^2, We)$. Hence W is generated by one element w since B is a valuation ring. Then

$$(0, We) = \text{Ann}_R \text{Ann}_R(0, we) = \text{Ann}_R(0, E) = (0, E),$$

which contradicts $E \neq We$.

Next, we claim that any proper submodule F of E is not faithful. We can take two elements e_1, e_2 of E so that

$$F \subset e_1 \subsetneq Be_2 \subset E.$$

From the proof of (a), $\text{Ann}_B(e_i)$ contains strictly $\text{Ann}_B(e_2)$; specifically $\text{Ann}_B(e_1)$ is nonzero, so is $\text{Ann}_B(F)$.

Now assume $\text{Soc}_R(R) = 0$. Then the radical (W, E) of R is faithful and has a zero socle, so that $(W, E) \neq \text{Rad}(W, E) = (W^2, WE)$. WE is a faithful B-module, so it is equal to E. Thus W is generated by one element w. $\text{Rad}(R) = R(w, 0)$ leads to R having a nonzero socle by applying the proof of C. M. Ringel [10, Lemma 3], a contradiction. This completes the proof.

Corollary 3. Let R be the trivial extension ring of a valuation ring B of an injective nonzero B-module E. If R is QF-1, then the following hold.

(a) E is the injective hull of $B/\text{Rad}(B)$, so B is an almost maximal valuation ring;

(b) if E is cyclic, then B and R are PF;

(c) if B is not an integral domain, then R is PF.

Proof. (a) We know that $(0, \text{Soc}_B(E))$ is minimal and essential in R from Theorems 1 and 2. So $\text{Soc}_B(E)$ is simple and essential in E, and thus E is the injective hull of $B/\text{Rad}(B)$. By C. Faith [4, Theorem 20.49], B is almost maximal.

(b) If E is cyclic, E is isomorphic to B. By (a), E is an injective cogenerator, so is B. By B. J. Müller [8, Theorem 10], then R is PF.

(c) Since B is an almost maximal nonintegral domain, B is maximal by C. Faith [4, Proposition 20.46]. We shall show that the endomorphism ring of E is canonically isomorphic to B. This implies that R is injective by R. M. Fossum et al. [6, Corollary 4.37] since E is injective. Now let f be any element of the endomorphism ring of E, and $\{e_{ao}\}_{o \in A}$ be a set of generators of E. For every e_{ao}, a map of $R(0, e_{ao})$ into R, as follows $r(0, e_{ao}) \mapsto (0, be_{ao})$ for $r = (b, e) \in R$, is a well-defined R-homomorphism, so there exists an element b_{ao} of B such that $fe_{ao} = b_{ao}e_{ao}$ by the principal extension property. Then we consider
the system of congruences as follows:

\[x \equiv b_\alpha(I_\alpha) \quad (\alpha \in A, b_\alpha \in B, I_\alpha = \text{Ann}_B(e_\alpha)). \]

For any \(\alpha \) and \(\beta \) in \(A \), we may assume that \(Be_\alpha \subset Be_\beta \) since \(E \) is uniserial. If \(e_\alpha = be_\beta \) by an appropriate element \(b \) of \(B \), then \(b_\beta e_\alpha = bb_\beta e_\beta = bfe_\beta = fe_\alpha = b_\alpha e_\alpha \), so \(b_\beta - b_\alpha \in I_\alpha \). This shows that the above system is pairwise solvable. There exists a solution of it, since \(B \) is maximal. This solution induces \(f \). This completes the proof.

C. Faith [5, Theorem 6A] has given equivalent conditions on a trivial extension of a ring to be a PF valuation ring. Here we shall give the necessary and sufficient condition in order that a trivial extension QF-1 ring is a valuation ring.

Corollary 4. Let \(R \) be the trivial extension QF-1 ring of a ring \(B \) by a nonzero \(B \)-module \(E \). Then the following are equivalent:

(a) \(R \) is a valuation ring;

(b) \(B \) is an integral domain and is a valuation ring.

Proof. We assume (a). For any ideals \(I, J \) of \(B \), \((I, IE), (J, JE) \) are ideals of \(R \). We have either \((I, IE) \supset (J, JE) \) or \((I, IE) \subset (J, JE) \), so either \(I \supset J \) or \(I \subset J \), which means that \(B \) is a valuation ring.

Then \(E \) is faithful by Theorem 2. Next, take any nonzero element \(b \) of \(B \). An ideal of \(R \) generated by \((b, 0)\) is \((Bb, bE)\), which is not contained in an ideal \((0, E)\) of \(R \). Thus it contains \((0, E)\), hence we have \(bE = E \). The regularity of \(b \) follows from the faithfulness of \(E \).

We assume (b). By Theorem 2, \(E \) is uniserial and faithful. We are in the case where \(\text{Soc}_B(B) = 0 \) because \(B \) is an integral domain. From the proof of Theorem 2, any proper submodule of \(E \) is not faithful. Take an ideal \(I \) of \(R \) such that \(I \) contains one element \((b, e)\) with \(b \neq 0 \). Then a submodule \(bE \) of \(E \) is faithful, so equal to \(I \), which leads to \(I \) containing \((0, E)\). Thus the ideals of \(R \) are of the form \((J, E)\), with \(J \) an ideal of \(B \), and of the form \((0, F)\), with \(F \) a submodule of \(E \). Since both \(B \) and \(E \) are uniserial, \(R \) is a valuation ring.

Acknowledgement. The author wishes to express his best thanks to Professor H. Tachikawa for his helpful suggestions and encouragements.

References

2. ______, A property of QF-1 rings (preprint).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Institute of Mathematics, University of Tsukuba, Sakura-Mura Niihari-Gun Ibaraki, 300-31 Japan