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A CHARACTERIZATION OF SMOOTH FUNCTIONS

DEFINED ON A BANACH SPACE

RICHARD M. HAIN

Abstract. A sufficient condition for a function defined on a Banach space

to be C* is given. This enables us to characterize the C°° functions from one

Banach space into another Banach space as those functions that, for each

positive integer m, have the property that the composition of the function

with each C°° function from Rm into the domain of the function is C°°.

1. Introduction. Due to the nature of the definition of the higher Fréchet

derivatives of a function defined on a Banach space it is sometimes difficult

to determine whether a given function is of class Ck. In this paper we give a

sufficient condition for a function defined on a Banach space to be Ck

(1 < k < oo). As a corollary we characterize the C00 functions from one

Banach space into another Banach space as those functions that, for each

positive integer m, have the property that the composition of the function

with each C°° function from Rm into the domain of the function is C°°.

Recall the following facts from the calculus of Banach spaces. This

material may be found in [5] or [6]. Let F and F be Banach spaces, ß an open

subset of F and /: ß -» F a function of class Ck where A: is a positive integer.

For each integer p, between 0 and k, the pth derivative Dpf of / is a

continuous function defined on ß and taking values in LP(E, F), the Banach

space of bounded p multilinear functions from Ep into F For an element <J>

of LP(E, F) the norm of <0 is given by

||$|| = supino,,..., vp)\\:vj E E, \\Vj\\ < 1 and Kj < />}.

2. The Main Theorem.

Theorem 1. For each positive integer k, a function from a Banach space into

another Banach space is of class Ck if its composition with each C°° function

from Rk+X into the domain of the function is of class Ck + X. In particular, such a

function is of class C°° if and only if for all positive integers m its composition

with each C°° function from Rm into the domain of f is C°°.

Remarks, (i) A more desirable version of the theorem would read: "A

function between two Banach spaces is of class Ck if and only if its

composition with each C°° function from R*+1 into the domain of the

function is of class Ck." This is certainly true when the dimension of the
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domain is finite but its truth is unknown in the general case.

(ii) Even when the domain of the function is of finite dimension it is not

true that if the composition of the function with each C°° path is C ', then the

function is of class C1, as the following example shows. Let (r, 9) denote

the usual polar coordinates in R2. Define/: R2 -» R by/(r, 9) = r sin 39. It is

easily seen that / is not Fréchet differentiate at the origin although for all

smooth paths y : R -^> R2, the path/ ° y is of class C '.

The following lemma is due to K. T. Chen [3] and I am grateful to him for

allowing me to reproduce it here.

Lemma 2. If {bn} is a sequence of points in a normed vector space E such that

\\b„\\ = 0(exp( — 2")) as n -» oo, then there exists a C°° path y: R—» E such

that y(l - 2~") = bn and y(l) = 0.

Proof. Choose a C™ function 9: R^>R with the following properties;

9(x) = 0 whenever x < 0 and 9(x) = 1 whenever x > 1. For convenience set

t„ = 1 - 2"" and define Sn: [/„_„ f„]^[0, 1] by Sn(t) = 2"(t - t„). Now

define y: R —» E by

bo, t < 0,

y(0 = j 0 » s„(t)bn + (i-öo s„(t))bn_x,   /„_,<?< t„,

o, t > 1.

Observe that if t E [r„_„ t„], then for each positive integer/?

||y0»(,)||= o(2pnexp(-2"))   asw-^oo.

It follows from the mean value theorem that y is a C °° path.

An interesting consequence of this lemma is the following result.

Corollary 3. A function defined on a normed vector space is continuous if

and only if its composition with each C °° path in the domain of the function is

continuous.

We shall often denote a typical element (vx, . . . , vp) of the /»-fold Cartesian

product Ep of E with itself by v; a typical element of the sequence {v"} in Ep

being (vx, . . . , vp). We define a distance function on Ep by defining the

distance d(v, w) between two elements v and w of Ep by

d(\, w) = max{||c, - vv,|| : I < j < p).

As usual {ex, . . . ,ep) denotes the standard basis of R^.

Lemma 4. If E is a normed vector space, {an} a sequence in E converging to b

and {w") a sequence in Ep converging to v, then there is a subsequence {bn} of

{an} and a corresponding subsequence {v"} of {w") and a C°° function a:

RxR'-»£ such that

(i)for each t in R, the function a(t, — ); Rp —» E is an affine map,

(ii) for each positive integer n and each integer j with 1 < j < p we have
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o(l - 2-", ef) = bn + vf, a(l - 2~", 0) = b„, a(l, ef) = b + u, and a(l, 0) =

b.

Proof. Choose a subsequence {nk} of {«} such that the corresponding

subsequences {bn) of {a„) and {v") of (w"} satisfy

\\b - bn\\ = 0(exp(-2-))   and    ||v - v"|| = 0(exp(-2"))

as n -» oo. Let t„, 9: R-»R and S„: [tn_x, f„]-»[0, 1] be as in the proof of

Lemma 2. For an element w of Ep and an element x of R^, denote by x • w

the element xxwx + • • ■ + xpwp of F. Define a:RxR'->£by

b0 + x • v°,       / < 0,

j 9 o Sn(t)(bn +xY) + (l-i. Sn(t)){bn_x + x • v""1),

'„-> <t <tH,

b + x • v,        t > 1.

Let F and F be Banach spaces and ^ a positive integer. Denote the

subspace of LP(E, F) consisting of the bounded symmetric p multilinear

functions from EP into F by LP(E, F). For an element v of E, denote the

element (v, . . . ,v) of Ep by vp. The following result is well known and will

not be proved. A proof may be found in [1] or [2].

Lemma 5. Let E and F be Banach spaces, ß an open convex subset of E,f an

F valued function defined on ß and <pp: ß -* LP(E, F) (0 < p < k) continuous

functions. Whenever \\v\\ is small enough we may define for each a in ß

*   <p„(a)vp
R(a,v)=f(a + v)- 2 ^~ ■

p = 0       P-

If for each element b of Üwe have \\R(a, v)\\ = o(||o||*) as (a, v) -> (b, 0), then

f is of class Ck and Dpf = yp for each integer p with 0 < p < k.

I am grateful to H. Porta for showing me the following lemma from linear

algebra and providing its proof.

Lemma 6. Let E and F be real vector spaces, p a positive integer and f a

symmetric function defined on Ep and taking values in F. If

(i) For each element (vx, . . . , vp) of Ep and each real number X we have

f(Xvx, v2,..., vp) = Xf(vx, 02,..., vp)

and

(ii) /(ü0 + vx, v2, . . . , vp) = /(o,,, v2, . . . , vp) + f(vx, v2,..., vp) whenever

v0, vx, . . . , vp are linearly dependent vectors in E, then f is a symmetric p

multilinear function from Ep into F.

Proof. We need only consider the case when p = 2. Suppose that /:

F X F -» F is a function satisfying conditions (i) and (ii) above. Let x,y, z

be arbitrary elements of F. Applying (ii) twice we see that
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fix + y + z, x + y + z) - f(x, x) - f(y,y) - f(z, z)

= 2f(x+y,z) + 2f(x,y).

Since the left-hand side is symmetric in x, y and z we conclude that

fix +y,z)+ f(x,y) = fix + z,y) + fix, z).

That is

fix +y,z)- fix, z) - fix + z,y)- f(x,y). (2.1)

By replacing y by 2y in (2.1) and applying (2.1) again we obtain

fix + 2y, z) + fix, z) = 2f(x + y, z). (2.2)

Similarly one obtains

f(2x +y,z)+ f(y, z) = 2f(x + y, z). (2.3)

Now replace x by 2x in (2.2) and apply (2.3) to see that

f(2x + 2y, z) + 2f(x, z) = 4f(x + y, z) - 2f(x, z).

That is

fix +y,z)= fix, z) + fiy, z).

Proof of Theorem 1. Let E and F be Banach spaces, k a positive integer

and /: E—>F a function such that for each C°° map a: Rk+X—> E, the

composite/ ° a is of class Ck + X. Our first task is to construct for each integer

p between 1 and k + 1 candidates for Dpf(b). For a fixed point b in E and

fixed v in Ep, define a C °° function a : Rp —> E by a(x) = b + x • v (the

notation is as in the proof of Lemma 4). Now define tpp: E —> LP(E, F) by

%(b)(y) = Dp(f o a)(0)(ex, ..., ep). (2.4)

Observe that the right-hand side makes sense because /»ais assumed to be

of class Ck+X. Since/ ° a is of class Cp, it follows that for each b in E, <pp(b)

satisfies the conditions of Lemma 6. We conclude that <p (b) is a symmetric p

multilinear function from Ep into F.

Next we show that the function 8pf: E X Ep —> jF defined by

8»f(b, v) = %(b)(y)

is continuous. If {(/>„, v")} is a sequence in E X Ep converging to (b, v), then

according to Lemma 4 we can, by dropping to a subsequence if necessary,

define a C°° function a: R X Rp ^ £ satisfying the conditions set out in

Lemma 4. It follows from (2.4) and the fact that/ ° a is of class Ck + X that

8pf(b,y) = Dp(foa)(l,0)(ex,...,ep)

=  lim D»(foa)(l -2-",0)(ex,...,ep)

=  lim   8pf(bn,y").
n—»oo

Observe that in particular we have shown that for each b in E, the function

<pp(b) is a bounded multilinear function.

Our final task is to show that / is of class Ck. According to Lemma 5 we



SMOOTH FUNCTIONS DEFINED ON A BANACH SPACE 67

need only show that R(a, v) = 0(||«||*) as (a, v) -> (b, 0) and that <p is

continuous for 0 < p < k. Since the proof of Taylor's theorem depends only

upon the restriction of the function to a line segment we have

R{a, v) =S^\k-Y)\^a + tv){vk) " ''M0*)} dL

It follows that if tpk is continuous, then \\R(a, v)\\ = o(||o||*) as (a, v) -» (b, 0).

To complete the proof we demonstrate the continuity of <pp (0 < p < k).

We use induction. When p = 0 the result follows from Corollary 3. Suppose

that we have shown that/is of class Ck~x, we will show that <pk is continuous.

If b, u, vx, . . . , vk are points in F, then

<Pk(b + "X«i. •••>«*)- <P*(*)(«i. •••,%)

= f <Pk+\(b + tu)(u, vx,..., vk) dt.

Thus

\\<Pk(b + M)(üi> •••.%)- <P*(*)(«i> • • • » »*)||

<   sup  \\<pk+x(b+ tu)(u,vx,...,vk)\\.
reio.1]

Since S*+1/ is a continuous function, for each e > 0 we can find p > 0 such

that p < 1 and if x,wx, . . . ,wk are points in F all with norm less than p, then

||á*+1/(6 + x)(w1,...,w,)||<e.

Suppose now that for 1 < j < k we have ||u,|| < 1. If ||u|| < pk+x, then

\\8k + xf(b + tu)(u, vx,..., vk)\\ =\\8k+xf(b + tu)(p-ku, pvx, ..., pvk)\\ < e.

It follows that <pk is continuous and the theorem is proved.

Remark. As a corollary of the theorem we deduce that if we consider a

Banach space F as a differentiable space (in the sense of Chen [4]) where the

plots are generated by the C°° functions from finite dimensional Euclidean

vector spaces into F, then the notion of smooth differentiable space 1 forms

coincides with the usual notion of smooth 1 forms on a Banach space (see for

example Lang [5]). This result can be applied to the calculus of variations on

Banach spaces (see [3]).
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