contractions are reflexive
Author:
Pei Yuan Wu
Journal:
Proc. Amer. Math. Soc. 77 (1979), 68-72
MSC:
Primary 47A15
DOI:
https://doi.org/10.1090/S0002-9939-1979-0539633-X
MathSciNet review:
539633
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: It is shown that a completely nonunitary contraction defined on a separable Hilbert space with finite defect indices is reflexive.
- [1] C. Apostol, Operators quasisimilar to a normal operator, Proc. Amer. Math. Soc. 53 (1975), 104-106. MR 0402522 (53:6341)
- [2] N. Dunford and J. T. Schwartz, Linear operators, Part II, Interscience, New York, 1967.
- [3] D. Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17 (1966), 511-517. MR 0192365 (33:590)
- [4] B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space, North-Holland, Amsterdam; Akadémiai Kiadó, Budapest, 1970. MR 0275190 (43:947)
- [5] -, On the structure of intertwining operators, Acta Sci. Math. 35 (1973), 225-254. MR 0399896 (53:3737)
- [6] P. Y. Wu, Bi-invariant subspaces of weak contractions, J. Operator Theory (to appear). MR 532877 (80k:47009)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A15
Retrieve articles in all journals with MSC: 47A15
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1979-0539633-X
Keywords:
contraction,
reflexive operator,
functional model for contractions,
quasi-similarity
Article copyright:
© Copyright 1979
American Mathematical Society