Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Function space flow invariance for functional-differential equations of retarded type


Author: James H. Lightbourne
Journal: Proc. Amer. Math. Soc. 77 (1979), 91-98
MSC: Primary 34K05
DOI: https://doi.org/10.1090/S0002-9939-1979-0539637-7
MathSciNet review: 539637
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathcal{C}$ denote the Banach space of continuous functions $ \phi :[ - r,0] \to {{\mathbf{R}}^n}$, let $ \Omega \subset \mathcal{C}$ be closed, and let $ f:[0,\infty ) \times \Omega \to {{\mathbf{R}}^n}$ be continuous. In this note we establish necessary and sufficient conditions for function space flow invariance for the functional differential equation: $ x'(t) = f(t,{x_t})$ for $ t \geqslant 0,{x_0} = \phi \in \Omega $. That is, for each $ \phi \in \Omega $ there exist $ b > 0$ and a solution $ x:[ - r,b] \to {{\mathbf{R}}^n}$ such that $ {x_t} \in \Omega $ for each $ t \in [0,b]$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34K05

Retrieve articles in all journals with MSC: 34K05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0539637-7
Article copyright: © Copyright 1979 American Mathematical Society