Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A maximal inequality for $ H\sp{1}$-functions on a generalized Walsh-Paley group


Author: Nobuhiko Fujii
Journal: Proc. Amer. Math. Soc. 77 (1979), 111-116
MSC: Primary 42B30; Secondary 26D10, 42C10, 43A70
DOI: https://doi.org/10.1090/S0002-9939-1979-0539641-9
MathSciNet review: 539641
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G = \prod _{i = 0}^\infty Z({p_i})$ be the countable product of discrete cyclic groups of order $ {p_i}$. We assume that $ {\sup _{i \geqslant 0}}{p_i} < \infty $. We consider Walsh-Fourier series on G and define $ {H^1}$-functions on G by the Coifman-Weiss atoms. Let $ {K_n}(x)$ be the nth (C, 1)-kernel. We prove that $ {\smallint_G {{{\sup }_{n \geqslant 1}}\vert({K_n} \ast f)(x)\vert d\mu \leqslant C\left\Vert f \right\Vert} _{{H^1}}}$. Here $ d\mu $ is the normalized Haar measure, $ {\left\Vert \right\Vert _{{H^1}}}$ is the $ {H^1}$-norm and C is a constant independent of f.


References [Enhancements On Off] (What's this?)

  • [1] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. MR 0447954 (56:6264)
  • [2] N. J. Fine, On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372-414. MR 0032833 (11:352b)
  • [3] -, Cesàro summability of Walsh-Fourier series, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 588-591. MR 0070757 (17:31f)
  • [4] J. Gosselin, Almost everywhere convergence of Vilenkin-Fourier series, Trans. Amer. Math. Soc. 185 (1973), 345-370. MR 0352883 (50:5369)
  • [5] F. Schipp, Über gewissen Maximaloperatoren, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 18 (1974), 189-195. MR 0430665 (55:3670)
  • [6] M. H. Taibleson, Fourier analysis on local fields, Princeton Univ. Press, Princeton, N. J., 1975. MR 0487295 (58:6943)
  • [7] N. Ja. Vilenkin, On a class of complete orthonormal systems, Izv. Akad. Nauk SSSR Ser. Mat. 11 (1947), 363-400; English transl., Amer. Math. Soc. Transl. (2) 28 (1963), 1-35. MR 0154042 (27:4001)
  • [8] S. Yano, Cesàro summability of Walsh-Fourier series, Tôhoku Math. J. (2) 9 (1957), 267-272. MR 0095384 (20:1887)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42B30, 26D10, 42C10, 43A70

Retrieve articles in all journals with MSC: 42B30, 26D10, 42C10, 43A70


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0539641-9
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society