Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Weak limits of measures and the standard part map


Author: Peter A. Loeb
Journal: Proc. Amer. Math. Soc. 77 (1979), 128-135
MSC: Primary 28A99; Secondary 03H05, 60B10
DOI: https://doi.org/10.1090/S0002-9939-1979-0539645-6
MathSciNet review: 539645
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A construction is given, using the standard part map st, of the $ {\text{weak}^\ast}$ standard part of an internal Baire measure in the nonstandard extension of a compact Hausdorff space. It is shown that the inverse image with respect to st of a Borel set is universally measurable with respect to completions of the $ \sigma $-algebra generated by internal Baire sets. Applications and extensions of these results to noncompact spaces are given.


References [Enhancements On Off] (What's this?)

  • [1] R. M. Anderson, A nonstandard representation for Brownian motion and Itô integration, Israel J. Math 25 (1976), 15-46. MR 0464380 (57:4311)
  • [2] -, Star-finite representations of measure spaces (to appear).
  • [3] R. M. Anderson and Salim Rashid, A nonstandard characterization of weak convergence, Proc. Amer. Math. Soc. 69 (1978), 327-332. MR 0480925 (58:1073)
  • [4] C. W. Henson, Analytic sets, Baire sets, and the standard part map, J. London Math. Soc. (to appear). MR 536371 (80i:28019)
  • [5] L. L. Helms and P. A. Loeb, Applications of nonstandard analysis to spin models, J. Math. Anal. App. (to appear). MR 538222 (80d:82038)
  • [6] G. Herglotz, Über Potenzreihen mit positivem, reellem Teil im Einheitskreis, Ber. Verhandl. Sächs Akad. Wiss. Leipzig Math.-Phys. Klasse 63 (1911), 501-511.
  • [7] P. A. Loeb, A nonstandard representation of measurable spaces, $ {L_\infty }$, and $ {L^\ast}_\infty $, Contributions to Nonstandard Analysis (W. A. J. Luxemburg and A. Robinson, Eds.), North-Holland, Amsterdam, 1972, pp. 65-80. MR 0482128 (58:2215)
  • [8] -, Conversion from nonstandard to standard measure spaces and applications in probability theory, Trans. Amer. Math. Soc. 211 (1975), 113-122. MR 0390154 (52:10980)
  • [9] -, Applications of nonstandard analysis to ideal boundaries in potential theory, Israel J. Math. 25 (1976), 154-187. MR 0457757 (56:15961)
  • [10] -, A generalization of the Riesz-Herglotz theorem on representing measures, Proc. Amer. Math. Soc. 71 (1978), 65-68. MR 0588522 (58:28574)
  • [11] W. A. J. Luxemburg, A general theory of monads, Applications of Model Theory to Algebra, Analysis, and Probability (W. A. J. Luxemburg, Ed.), Holt, Rinehart, and Winston, New York, 1969, pp. 18-86. MR 0244931 (39:6244)
  • [12] D. W. Müller, Nonstandard proofs of invariance principles in probability theory, Applications of Model Theory to Algebra, Analysis, and Probability (W. A. J. Luxemburg, Ed.), Holt, Rinehart, and Winston, New York, 1969, pp. 186-194. MR 0239645 (39:1002)
  • [13] S. Rashid, Economies with infinitely many traders, Ph.D. Dissertation, Yale University, May 1976.
  • [14] F. Riesz, Sur certaines systèmes singuliers d'équations intégrales, Ann. Sci. École Norm. Sup. 28 (1911), 33-62. MR 1509135
  • [15] A. Robinson, Non-standard analysis, North-Holland, Amsterdam, 1966. MR 0205854 (34:5680)
  • [16] H. L. Royden, Real analysis, Macmillan, New York, 1968. MR 0151555 (27:1540)
  • [17] K. D. Stroyan and W. A. J. Luxemburg, Introduction to the theory of infinitesimals, Series on Pure and Applied Mathematics, vol. 72, Academic Press, New York, 1976. MR 0491163 (58:10429)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28A99, 03H05, 60B10

Retrieve articles in all journals with MSC: 28A99, 03H05, 60B10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0539645-6
Keywords: Nonstandard analysis, $ {\text{weak}^\ast}$ standard part, $ {\text{weak}^\ast}$ cluster point, Kolmogorov extension theorem, Riesz-Herglotz theorem, tight measure
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society