CONSTRUCTION OF A RIGID ARONSZAJN TREE

URI AVRAHAM

Abstract. We construct in ZFC an Aronszajn tree with no automorphism.

Using the nonisomorphic Aronszajn trees constructed by Gaifman and Specker [1] we build in ZFC a normal rigid Aronszajn tree thus answering a question of T. J. Jech [2].

For a tree T and $a \in T$, Ta denotes the part of T above a, i.e., $Ta = \{ x \in T | x > a \}$. T_a, $a < \omega_1$, is the ath level of T. We say that $a, b \in T$ meet at the level a if there is an $e \in T_a$, $e < a$, $e < b$, but no such e exists in T_{a+1}.

By [1] we have for every uncountable $X \subseteq \omega_1$ a normal Aronszajn tree $T(X)$ such that:
(1) for every $a \in T(X)$ there is an uncountable subset of $T(X)_a$ every two elements of which meet at level in X, and
(2) there does not exist an uncountable subset of $T(X)$ every two elements of which meet at level in $\omega_1 - X$.

(Briefly, if we start from an Aronszajn tree $T \subseteq \omega_\omega$ then $T(X) \subseteq \omega_\omega$ is the set of all functions f such that the collapse of $f|X$ is in T and $f(\omega_1 - X)$ is different from zero only finitely many times.)

We will construct a normal Aronszajn tree R such that there is no order preserving function f: $R \rightarrow R$ other than the identity. Let X, $X_{a,n}$, $a < \omega_1$, $n < \omega$, be pairwise disjoint uncountable subsets of ω_1, construct the trees $T(X_{a,n})$ such that their domain will be pairwise disjoint. We construct a sequence R^n, $n < \omega$, of Aronszajn trees such that $R^n \subseteq R^{n+1}$ by induction on n. A point in $R^{n+1} - R^n$ is said to be of rank $n + 1$.

R^0 is $T(X)$. Suppose R^n is defined, let $\{ a^a_\gamma | \gamma < \omega_1 \}$ be its elements, for every a^a_γ, $a^a_\gamma \in R^n_a$ for some $\alpha < \omega_1$, take any member b^n_γ of $T(X_{a,n})_{a+1}$ and plant $T(X_{a,n})_{b^n_\gamma}$ above a^a_γ. The result is R^{n+1}. Again, R^{n+1} is obtained by partial ordering $R^n \cup \gamma < \omega_1$, $T(X_{\gamma,n})_{b^n_\gamma}$ as follows: for elements of R^n or $T(X_{\gamma,n})$ the order is as in R^n or $T(X_{\gamma,n})$, respectively, b^n_γ is above a^a_γ and the partial order is transitive. For $x \in T(X_{\gamma,n})$ we define $r(x) = b^n_\gamma$ and $r^*(x) = a^a_\gamma$, for $x \in R^n$, $r(x)$ is the root of R^n.

$R = \bigcup n < \omega R^n$ is a normal Aronszajn tree. Note that for $m < n$ an element of R^n cannot be below an element of rank m. We prove that R is

Received by the editors February 8, 1978.

Key words and phrases. Aronszajn tree, rigid tree.

1ADDED IN PROOF. This result was already known to J. Baumgartner. See Notices Amer. Math. Soc. 22 (1975), p. A-219.

© 1979 American Mathematical Society
0002-9939/79/0000-0478/$01.50

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
rigid. Let \(f : R \rightarrow R \) be order preserving and for some distinct \(x, y \in R_\alpha, f(x) = y \).

For some \(n < \omega, x, y \in R^n, x = a^\gamma_n \) for some \(\gamma < \omega_1 \) and \(T(X_{\gamma,n})b^\gamma_n \) was grafted above \(a^\gamma_n \), it follows from (1) that we can find \(\aleph_1 \) elements in \(R_{f(x)} \) every two of which meet at level in \(X_{\gamma,n} \). Let \(k < \omega \) be the least integer such that we can find an uncountable \(A \subseteq R^k_y \) every two elements of which meet at level in \(X_{\gamma,n} \). Look at \(B = \{r^*(x) | x \in A \} \) for such an \(A \). If it is uncountable then we have \(\aleph_1 \) elements in \(R^k_y \) contradicting the definition of \(k \). Hence we can find \(b \) such that \(b = r(x) \) for uncountably many \(x \) in \(A \). \(b \) is compatible with \(y \), hence distinct from \(x \) so that \(b = b^\eta_n \) for some \((\eta, l) \) distinct from \((\gamma, n) \) it follows that we have found \(\aleph_1 \) elements in \(T(X_{n,l}) \) every two of which meet at level outside \(X_{n,l} \), and this is a contradiction.

REFERENCES

Department of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel

Current address. Department of Mathematics, Dartmouth College, Hanover, New Hampshire 03755

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use