SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

NONTRIVIALLY PSUEDOCOMPLEMENTED LATTICES
ARE COMPLEMENTED

M. S. LAMBROU

ABSTRACT. Nontrivially pseudocomplemented lattices are complemented.

A lattice \(L \) with 0 and 1 is called pseudocomplemented if for each \(a \in L \) there is a largest \(a^* \) with \(a \land a^* = 0 \). Such an \(a^* \) is called the pseudocomplement of \(a \). A pseudocomplemented lattice is called nontrivially pseudocomplemented if each nonunit element has a nonzero pseudocomplement.

THEOREM. Nontrivially pseudocomplemented lattices are complemented.

Proof. Let \(L \) be a nontrivially pseudocomplemented lattice. First observe that the intersection of ultrafilters (maximal dual ideals of some authors) of \(L \) is equal to \{1\}. Indeed, for any nonunit element \(a \) of \(L \), a Zorn's Lemma argument shows the existence of a filter (dual ideal) maximal subject to the conditions (i) containing the (proper) principal ideal \(\{ x \in L: x > a^* \} \) and (ii) not containing \(a \). It is easy to see that this filter is an ultrafilter of \(L \) since any larger filter either coincides with it or is equal to \(L \) according to whether \(a \) belongs to or does not belong to the larger filter. Clearly this ultrafilter does not contain \(a \).

Now let \(b \in L \) be arbitrary. We shall show that \(b \lor b^* = 1 \) or, equivalently, \(b \lor b^* \) belongs to all ultrafilters of \(L \) and thus \(b^* \) is a complement of \(b \). Let \(U \) be an arbitrary ultrafilter of \(L \). If \(b \in U \) then so is \(b \lor b^* \), so we may assume that \(b \notin U \). By the maximality of \(U \), the filter generated by \(b \) and \(U \) contains 0, so there is an \(x \) in \(U \) with \(b \land x = 0 \). But \(b^* \) is the largest element whose meet with \(b \) equals zero, so \(b^* \) dominates the element \(x \) of (the filter) \(U \), showing that it is itself in \(U \). Clearly again \(b \lor b^* \) is in \(U \) and the rest follows.

Remarks. (1) The nontriviality assumption is essential. For example chains are (trivially) pseudocomplemented but not necessarily complemented.

(2) A complete lattice is called \(\land \)-distributive if, for any \(b \in L \) and any subset \(A \) of \(L \), \(b \land \lor A = \lor \{ b \land a: a \in A \} \). A lattice is called weakly...
disjunctive if for each nonunit element a of L there is a nonzero element b
with $a \land b = 0$. Clearly complete, \land-distributive weakly disjunctive lattices
are nontrivially pseudocomplemented but the converse is false as seen by
considering the five element nonmodular pentagon. In [2] MacNab shows
that complete, \land-distributive weakly disjunctive lattices are Boolean alge-
bras. The proof in [2] uses distributivity to show that the lattice is com-
plemented. By the above theorem this follows easily without any use of distribu-
tivity and gives MacNab’s result as a corollary.

(3) In [1] we strengthen a result of Tarski by characterizing complete
atomic Boolean algebras as semisimple complete and completely distributive
lattices. As pointed out by MacNab in [2], this follows from the theorem in [2]
(and so from the theorem here) using Tarski’s result. Notice however that the
proof in [1] strengthens Tarski’s result without using it.

REFERENCES

1. M. S. Lambrou, *Semisimple complete and completely distributive lattices are Boolean algebras*,

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CRETE, IRAKLION, CRETE, GREECE