SELF-INJECTIVE RINGS

CARL FAITH

ABSTRACT. In 1958 Matlis proved that the study of Noetherian complete
local rings could be subsumed under the study of injective modules E over a
commutative ring A such that $B = \text{End}_A E$ is commutative. In this case
$B = \text{End}_B E$, and E is said to be strongly balanced over B. The main
theorem of this paper shows that the study of strongly balanced injectives
over any ring, and hence the study of Morita self-dualities, is contained in
the study of self-injective rings.

Introduction. Let $\text{mod-}A$ (A-mod) denote the category of all right (left)
A-modules over a ring A. For a noncommutative ring B and a two-sided
B-bimodule E, in a natural way the Cartesian product R is a ring, the
so-called split-null or trivial extension of E by B; also called the semidirect
product (ring) of the bimodule E and denoted by $R = (B, E)$.

Theorem. $R = (B, E)$ is an injective (injective cogenerator) in $\text{mod-}R$ iff E
is an injective (injective cogenerator) in $\text{mod-}B$ such that $B = \text{End}_B E$
canonically.

This theorem shows that any ring B with an injective bimodule E such that
$B = \text{End}_B E$ is isomorphic to a factor ring $R/(0, E)$ of a self-injective ring,
and also leads to new examples of self-injective rings, notably those which are
not injective cogenerator (= PF) rings, or not valuation rings.

When R, or E, is a two-sided injective cogenerator, the theorem is a
corollary of a theorem of Müller [23].

Propositions. We begin with the main lemma used in the proof of
Theorem 2.

1. Lemma. Let R be a ring, let E be an ideal which is its own left annihilator,
$\perp E = \{a \in R|ae = 0\} = E$, let $B = R/E$. Then E is canonically a B-bimod-
ule. If

(1.1) E is injective as a (canonical) right B-module, and
(1.2) $B \approx \text{End}_B E$ canonically,

then R is right self-injective (= injective in $\text{mod-}R$).

Conversely, if R is right self-injective, then for any ideal A, the left annihilator

Presented to the Society, August 18, 1977 under the title The injective local ring of a complete
local ring; received by the editors July 12, 1977 and, in revised form, July 20, 1978.

AMS (MOS) subject classifications (1970). Primary 13D99, 13H99, 16A52, 16A64; Secondary
13A15, 13B99, 16A34, 16A42.

1 Part of this paper was written while the author was a visitor at the Institute for Advanced
Study.
$^\perp A$ is an injective right R/A-module, and $\text{End}^\perp A_R^A \approx R/\perp A$ canonically. Thus, in this case, any ideal E satisfying $E = ^\perp E$ satisfies (1.1) and (1.2).

Proof. Let F be the injective hull of R in mod-R, and let

$$F_1 = \text{ann}_R E = \{ x \in F | xa = 0, \forall a \in E \}.$$

Then, F_1 is a right B-module, and $E = ^\perp E$ is an injective right B-module by (1.1). Since every B-submodule of F_1 is an R-submodule, then F_1 is an essential extension of $F_1 \cap R = E$ as an R-module, hence as a B-module, so injectivity of E in mod-B implies that $F_1 = \text{ann}_R E = E$. Thus, if $y \in F$, then $yE \subseteq \text{ann}_R E = E$, so y induces an endomorphism $b \in B' = \text{End} E_R = \text{End} E_B$. Now every $r \in R$ induces an endomorphism $r \in \text{End} E_B$ via left multiplication; hence $B = R/\perp E = R/E$ embeds in B' canonically. Since $B \approx B'$ canonically by the assumption (1.2), there exists $r \in R$ such that

$$yx = b(x) = r_x = rx, \ \forall x \in E,$$

so

$$(y - r)x = 0, \ \forall x \in E;$$

hence

$$y - r = c \in \text{ann}_R E = E \subseteq R.$$

Therefore, $y = r + c \in R$, $\forall y \in F$, proving that $F = R$ is injective. In this case, for any ideal A, $^\perp A$ is an injective right R/A-module (e.g., [3b, p. 66, Proposition 12]) and every $b \in \text{End} A_R^A$ is induced by an element $r \in R$; hence $R/\perp A \approx \text{End} A_R$. Also, $R/\perp A \approx \text{End}^\perp A_R = \text{End}^\perp A_R^A$, canonically. Taking $A = E = ^\perp E$, we have the stated properties (1) and (2).

2. **Theorem.** Let $R = (B, E)$ be the semidirect product of a bimodule E over a ring B. Thus, $a(xb) = (ax)b$ for all $a, b \in B$ and $x \in E$, and in $R = B \times E$ addition is componentwise, and multiplication is defined by:

$$ (a, x)(b, y) = (ab, ay + xb).$$

(The ring R is \approx the ring of all 2×2 matrices $(\begin{smallmatrix} a & x \\ 0 & b \end{smallmatrix})$, with $a \in B, x \in E$, under ordinary matrix operations.) Then:

(2.2) R is right self-injective iff E is injective in mod-B, and $B = \text{End} E_B$ canonically.

(2.3) R is a right injective cogenerator in mod-R (= R is right PF) iff E is an injective cogenerator of mod-B satisfying $B = \text{End} E_B$ canonically.

(2.4) Assuming (2.3), then R is left PF iff E is an injective cogenerator of B-mod, and $B = \text{End}_B E$ canonically.

Proof. (2.2). Identify E with $E_1 = \{(0, x) | x \in E\}$ in R, and B with $B_1 = \{(b, 0) | b \in B\}$. Clearly, $B \approx B_1 \approx R/E_1$ (under $b \mapsto (b, 0) \leftrightarrow (b, 0) + E_1$), and $^\perp E_1$ in R is E_1 if E is a faithful left B-module. Thus, assuming E_B injective and $B = \text{End} E_B$, that is, assuming (1.1) and (1.2), we have R is injective by Lemma 1. The converse also comes from Lemma 1.
(2.3). Assume that R is right PF (= pseudo-Frobenius). By [3a, p. 148, 3.31], an injective right R-module E is cogenerating iff every simple right R-module embeds in E. Since R is a right injective cogenerator ring by assumption, every simple right R-module $V \hookrightarrow R$. Now, since $J = \text{rad } R$ contains any square-zero (or nilpotent or nil) ideal, then $J \supseteq E_1$; hence $R/J \approx B/\text{rad } B$, and every simple right R-module $V = R/M$ corresponds to a simple right B-module $V' = B/M'$. Since V embeds in R, then V' embeds in R. If $v \in R$ and $v = (b, x) \neq 0$ generates V, then $b = 0 \Rightarrow V \subseteq E$, and $b \neq 0 \Rightarrow \exists (0, y) \neq 0 \in E$ such that $(b, x)(0, y) = (0, by) \neq 0 \in V \cap E$; hence $V \cap E = V \subseteq E$ in both cases. This proves that every simple B-module V' embeds in E. Since E is injective by (2.2), this proves that E is cogenerating in $\text{mod-}B$. Moreover, $B = \text{End}_E E$ via (2.2).

These remarks also suffice for the converse of (2.3), since E cogenerating means every simple B-module V' embeds in E; hence every simple R-module V embeds in E. Thus, if E is an injective cogenerator in $\text{mod-}B$, and $B = \text{End}_E E$, then R is injective by (2.2), hence cogenerating inasmuch as every simple right R-module V embeds in $E_1 = (0, E) \subseteq R$.

Proof of (2.4). Let R be left PF. Since E is an injective cogenerator of $\text{mod-}B$ (by assumption (2.3)), then E is faithful as a right B-module (see, e.g., [3a, p. 92, II4(a)]); hence $E_1^+ = E_1$ follows, so E_1 is an injective left B-module, where $B = R/E_1$, and it is easy to see that $E \approx E_1$ is actually an injective cogenerator of B-mod: If V is a simple left B-module, then V is a simple left R-module, so $V \subseteq R$. But $E_1V = 0$, since V is a B-module, so $V \subseteq E_1^+ = E_1$ making E_1 a cogenerator of B-mod (cf. [3b, p. 199, Exercise 1]). Conversely, if E is an injective cogenerator of B-mod, and $B = \text{End}_B E$, then by the right-left symmetry of Lemma 1 R is left self-injective, hence cogenerating inasmuch as every simple left B-module V embeds in $E_1 = (0, E) \subseteq R$.

2A. Corollary. Let $R = (B, E)$ be the semidirect product of a ring B and B-bimodule E. Then: R is cogenerating (both sides) iff E is a strongly balanced injective cogenerator over B (both sides). In this case R is PF (both sides).

Proof. A ring R is cogenerating on both sides iff R is PF on both sides (see [10]). Therefore, Theorem 2 applies.

Since there exist rings which are right cogenerating but not injective (see e.g. [17]), then (2.3) shows that E a strongly balanced cogenerator over $\text{mod-}B$ does not imply that $R = (B, E)$ is cogenerating. However, a theorem of Faith and Walker (e.g. [3b, p. 206, Proposition 24.9]) implies that any semilocal right cogenerating ring is injective. Moreover, if E is strongly balanced and cogenerating on both sides, then every one-sided ideal of R is an annihilator [22]. Note: by starting with, e.g., a self-injective ring $B = E$, one obtains another self-injective ring $R = (B, E)$ having B as a factor ring, etc.
Every known example of a right PF ring is left PF. (See [4a], [4b] for the background of this problem.)

2B. COROLLARY. If every right PF ring is left PF, then a bimodule \(E \) over a ring \(B \) satisfies (2.3) iff it satisfies the left-right symmetry (2.3)'.

PROOF. This follows from (2.4).

Thus, the question is whether right PF \(\Rightarrow \) left PF can be reduced to a module-theoretic question. Conceivably a negative answer could be found for the latter for the case when \(E \) is some strongly balanced injective cogenerator in \(\text{mod-} B \) for an integral domain \(B \). Thus, does (2.3) imply the following three conditions?

\[
(2.3)' \equiv \begin{cases}
(2.3a)' & E \text{ is injective in } B\text{-mod}, \\
(2.3b)' & E \text{ is a cogenerator in } B\text{-mod}, \\
(2.3c)' & B = \text{End}_B E \text{ canonically.}
\end{cases}
\]

A theorem of Kato [10] implies that a right PF ring is left PF iff it is left self-injective, and therefore it suffices to prove or disprove (2.3a)' and (2.3c)'. Moreover, a theorem of E. A. Walker and the author (see, e.g., [3b, p. 206, Proposition 24.9]) implies that any finitely generated projective cogenerator over a semilocal ring is injective. Thus, since a right PF ring is semiperfect hence semilocal, then (2.3b)' implies (2.3a)'; that is, it also suffices to prove or disprove (2.3b)' and (2.3c)'.

A mapping \(f: L \rightarrow E \) of a left ideal \(L \) of \(B \) into a \(B \)-module \(E \) is a Baer homomorphism if there exists \(m \in E \) such that \(f(x) = mx, \forall x \in L \). Then \(E \) is (FP)-injective in \(B\text{-mod} \) if every mapping \(f: L \rightarrow E \) from any (finitely generated) left ideal \(L \) is a Baer homomorphism. Any right PF ring is left FP-injective (a result which follows from the theorem of Jain [25] to the effect that \(R \) is left FP-injective iff every finitely presented right \(R \)-module is torsionless). Moreover, \(R = (B, E) \) is left FP-injective only if \(E \) is FP-injective in \(B\text{-mod} \), so we conclude that (2.3) implies the latter. Thus, (2.3) does imply some form of injectivity of \(E \) in \(B\text{-mod} \). Actually, left FP-injectivity of \((B, E) \) also implies: (1) that \(E \) is finitely quasi-injective in \(B\text{-mod} \) in the sense of [26], (2) that the right ideals of \(B \) satisfy the double annihilator condition with respect to \(E \), and similarly, (3) that the right \(B \)-submodules \(X \) of \(E \) of the form \(X = Y + EK \) for a finitely generated right ideal \(K \) of \(B \), and finitely generated \(B \)-submodule of \(E \) in \(\text{mod-} B \), also satisfy the double annihilator condition with respect to \(B \). (It would be of obvious interest to characterize FP-injectivity of \((B, E) \).)

3. COROLLARY. If \(E \) is a \(B \)-bimodule satisfying (2.3), then \(B \) is semiperfect, and \(E \) is a finite direct sum of indecomposable injectives. Therefore, there are only finitely many nonisomorphic simple \(B \)-modules, and \(E \) has finite socle.
Proof. Since $R = (B, E)$ is right PF, then R is semiperfect, e.g., by Osofsky's theorem [17] (cf. [3b, p. 213, Theorem 24.32]), and the rest follows from this.

4. Theorem. Let B be a commutative Noetherian ring with a strongly balanced injective module E. Then $B = \prod_{i=1}^{n} B_i$ is a finite product of complete local rings, and $E = \sum_{i=1}^{n} \bigoplus E_i$, where E_i is the smallest injective cogenerator of B_i, $i = 1, \ldots, n$. Thus, E is the smallest injective cogenerator of B.

Proof. Since B is Noetherian, E is a finite coproduct $E = \prod_{i=1}^{n} E_i$ of indecomposable injectives. Since each E_i has local endomorphism ring, the finite Krull-Schmidt theorem holds, and so B is a semilocal ring, idempotents lift modulo radical (see [3b, p. 45, 18.26]), $B = \prod_{i=1}^{n} B_i$, where $B_i = e_i E_i \approx \operatorname{End}_B E_i$ is a local ring, and $e_i^2 = e_i \in B$ is the projection idempotent, $i = 1, \ldots, n$. Hence, we may assume E is indecomposable and B local. By Matlis' theorem [13], in order that B be complete it is necessary and sufficient to show that E is the injective hull of $V = B/\text{rad } B$. By the Matlis-Utumi theorem, $J = \text{rad } B$ is the set of all b such that $bx = 0$ for some $x \neq 0$. Since J is f.g., and E is uniform, then $W = \operatorname{ann}_E J \neq 0$. Thus, W is an R/J-module, hence is semisimple (= a direct sum of simples), whence simple by uniformity, so $W \approx R/J \hookrightarrow E$. Then, E is the injective hull of $V = R/J$, as required.

4A. Corollary. If $B = \operatorname{End}_B E$ is a commutative local ring with f.g. radical J, and E injective, then $E = E(B/J)$ is the injective hull of B/J. So E is a cogenerator in $\text{mod-}B$.

Proof. Same.

4B. Corollary. If the semidirect product ring $R = (B, E)$ of a Noetherian commutative ring B and module E is self-injective, then R is an injective cogenerator, and a finite product of local injective cogenerators.

Proof. By Theorem 2, $B = \operatorname{End}_B E$ canonically, and E is an injective B-module, so Theorem 3B applies, and the rest is easy.

An application of Theorem 2 and Matlis' theorem [13] yields:

4C. Theorem. If B is a Noetherian local ring, and $E = E(B/\text{rad } B)$ the injective hull, then $R = (B, E)$ is injective iff B is complete. (Then R is PF.)

A ring R is a right valuation ring (VR) iff the right ideals of R are linearly ordered by inclusion. (A chain ring is a variant term for VR.)

2 If S is a commutative ring with duality, then there exists a (self) duality context $B F_S$ where F is the minimal injective cogenerator (Theorem of B. J. Müller [23]; see also Vamos [20, Corollary 1.7]). When the radical of S is finitely generated, then Corollary 4A shows that there is just one self-duality. The dualities for commutative S are in 1-1 correspondence with ring automorphisms of S of order < 2 (Morita [15]; cf. [3b, p. 199, 23.35]). For other dualities, consult [1], [3b], [7], [13]–[16], [20], [21], [23], [24].
5A. Proposition. A semidirect product ring \(R = (B, E) \) is a right VR iff \(B \) is a right VR, \(E \) is uniserial, and \(bE = E, \forall 0 \neq b \in B \).

Proof. If \(R \) is a right VR, then \(B \cong R/(0, E) \) is a right VR, and \(E \cong (0, E) \) is uniserial. If \(b \neq 0 \in B \), then \((b, 0)R \not\subseteq (0, E) \); hence
\[
(b, 0)R = (bB, 0) + (0, bE) \supseteq (0, E),
\]
so \(bE = E \). The converse follows by reading up.

A VD is a domain which is a VR. For simplicity, from here on we shall assume that \(B \) whence \(R \) is commutative.

5B. Corollary. Let \(E \) be a faithful \(B \)-module. Then \(R = (B, E) \) is a VR iff \(B \) is a VD and \(E \) is a uniserial divisible \(B \)-module.

Proof. Immediate.

5C. Corollary. Let \(E \) be a torsion free module over a domain \(B \). Then \(R = (B, E) \) is a VR iff \(B \) is a VD and \(E \) is a uniserial injective \(B \)-module. In this case \(R \) is injective iff \(E \) is strongly balanced.

Proof. Any torsion free divisible module over a domain is injective, so apply the corollary. (Conversely, any injective module is divisible.) The last sentence follows from Theorem 2.

6A. Theorem. Let \(R = (B, E) \) be a semidirect product ring. The f. a. e.:

1. \(R \) is a PFVR (= a VR which is PF).
2. \(B \) is an almost maximal valuation domain (AMVD), \(E = E(B/\text{rad } B) \) is the injective hull of \(B/\text{rad } B \), and \(B = \text{End}_A E \).
3. \(B \) is a local domain such that \(E = E(B/\text{rad } B) \) is uniserial and strongly balanced.
4. \(B \) is an MVD and \(E = E(B/\text{rad } B) \) is strongly balanced.

Proof. By Gill's theorem [5], a local ring \(B \) is AMVR iff \(E(B/J) \) is uniserial, where \(J = \text{rad } B \). Thus, using Theorems 2 and 5A, (2) \(\iff \) (3) follows. Moreover, (1) \(\iff \) (3) by 5C and Corollary 4A, and (2) \(\iff \) (4) by a theorem of Vamos [19].

6B. Corollary. If \(B \) is a Noetherian local domain, and \(E = E(B/J) \), then the semidirect product ring \(R = (B, E) \) is an injective VR iff \(B \) is a complete discrete valuation domain. In this case \(R \) is PF.

Proof. Follows from 6A and Matlis' theorem [13] (since \(B \) is a Noetherian VD).

7. Example. A noncongerenating injective local ring. (Levy [11].) Let \(F \) be a field, \(x \) an indeterminate, and \(W \) the family of all well-ordered sets of nonnegative real numbers. Let \(A \) denote the ring of all formal power series \(\sum_{a \in w} c_a x^w \), where \(c_a \in F \) and \(w \in W \) with the usual addition and multiplication. The proper ideals of \(A \) are: the principal ideals.
(x^b) = \{x^u | u \in A \}

and the ideals

(x^{c>b}) = \{x^u | u \in A^* \cup \{0\}, c > b \}

where A^* = units of A. (In particular, rad A = (x^{>0}).) Levy [11] proved that every proper factor ring is self-injective. Now R = A/(x) does not contain a minimal ideal, hence R is injective but not PF. [This corrects a statement of p. 216 of [3b] to the effect that every proper factor ring of A is PF! If every factor ring of a ring R is PF (= R is CPF), then R must be Artinian. (See for example [3b, p. 238, Proposition 25.4.6A].) However, no factor ring R = A/I, where I \neq rad A, can be Artinian, since (rad A)^2 = (rad A) \Rightarrow (rad R)^2 = (rad R).

Any infinite product of self-injective rings is self-injective, but never PF since never semiperfect, yielding additional examples of noncogenerating injective rings.

ACKNOWLEDGMENTS. I wish to thank B. Osofsky, P. Vamos, and J. Lambek for an insightful conversation, a reference, and an invitation, respectively.

ADDED JULY 1978. H. Sekiyama informs me that [28] contains the characterization of when R = (B, E) is injective (Corollary 4.36). In [27] he characterizes i.a. when R is QF-3.

BIBLIOGRAPHY

22. C. Faith, FP-injective rings and modules, in preparation.

DEPARTMENT OF MATHEMATICS, RUTGERS, THE STATE UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 088540