Note on simple integral extension domains and maximal chains of prime ideals

Author:
L. J. Ratliff

Journal:
Proc. Amer. Math. Soc. **77** (1979), 179-185

MSC:
Primary 13B20; Secondary 13A15

DOI:
https://doi.org/10.1090/S0002-9939-1979-0542081-X

MathSciNet review:
542081

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that if *R* is a semi-local (Noetherian) domain, then there exists a simple integral extension domain of *R* such that there exists a maximal chain of prime ideals of length *n* in some integral extension domain of *R* if and only if there exists a maximal chain of prime ideals of length *n* in . An interesting existence theorem on a certain type of height one prime ideals in follows.

**[1]**Evan G. Houston and Stephen McAdam,*Chains of primes in Noetherian rings*, Indiana Univ. Math. J.**24**(1974/75), 741–753. MR**0360566**, https://doi.org/10.1512/iumj.1975.24.24057**[2]**Stephen McAdam,*On taut-level 𝑅⟨𝑥⟩*, Duke Math. J.**42**(1975), no. 4, 637–644. MR**0387272****[3]**Masayoshi Nagata,*Local rings*, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers a division of John Wiley & Sons New York-London, 1962. MR**0155856****[4]**L. J. Ratliff Jr.,*Four notes on saturated chains of prime ideals*, J. Algebra**39**(1976), no. 1, 75–93. MR**0399072**, https://doi.org/10.1016/0021-8693(76)90062-4**[5]**L. J. Ratliff Jr. and S. McAdam,*Maximal chains of prime ideals in integral extension domains. I*, Trans. Amer. Math. Soc.**224**(1976), 103–116. MR**0437513**, https://doi.org/10.1090/S0002-9947-1976-0437513-3**[6]**L. J. Ratliff Jr.,*Maximal chains of prime ideals in integral extension domains. II*, Trans. Amer. Math. Soc.**224**(1976), 117–141. MR**0437514**, https://doi.org/10.1090/S0002-9947-1976-0437514-5**[7]**L. J. Ratliff Jr.,*Maximal chains of prime ideals in integral extension domains. III*, Illinois J. Math.**23**(1979), no. 3, 469–475. MR**537802****[8]**Louis J. Ratliff Jr.,*Chain conjectures in ring theory*, Lecture Notes in Mathematics, vol. 647, Springer, Berlin, 1978. An exposition of conjectures on catenary chains. MR**496884****[9]**-,*On maximal ideals and simple integral extension rings*, preprint.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
13B20,
13A15

Retrieve articles in all journals with MSC: 13B20, 13A15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1979-0542081-X

Keywords:
Integral extension ring,
maximal chain of prime ideals,
polynomial ring,
semi-local ring,
simple extension ring,
Upper Conjecture

Article copyright:
© Copyright 1979
American Mathematical Society