Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Rings whose right modules are direct sums of indecomposable modules


Author: Birge Zimmermann-Huisgen
Journal: Proc. Amer. Math. Soc. 77 (1979), 191-197
MSC: Primary 16A64
DOI: https://doi.org/10.1090/S0002-9939-1979-0542083-3
MathSciNet review: 542083
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that, given a module M over a ring with 1, every direct product of copies of M is a direct sum of modules with local endomorphism rings if and only if every direct sum of copies of M is algebraically compact. As a consequence, the rings whose right modules are direct sums of indecomposable modules coincide with those whose right modules are direct sums of finitely generated modules.


References [Enhancements On Off] (What's this?)

  • [1] F. W. Anderson and K. R. Fuller, Modules with decompositions that complement direct summands, J. Algebra 22 (1972), 242-253. MR 0301051 (46:209)
  • [2] -, Rings and categories of modules, Springer-Verlag, Berlin, 1973.
  • [3] M. Auslander, Notes on representation theory of artin algebras, Brandeis Univ., Waltham, Mass., 1972.
  • [4] S. U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457-473. MR 0120260 (22:11017)
  • [5] -, On direct sums and products of modules, Pacific J. Math. 12 (1962), 847-854. MR 0144932 (26:2472)
  • [6] C. Faith and E. A. Walker, Direct-sum representations of injective modules, J. Algebra 5 (1967), 203-221. MR 0207760 (34:7575)
  • [7] K. R. Fuller and I. Reiten, Note on rings of finite representation type and decomposition of modules, Proc. Amer. Math. Soc. 50 (1975), 92-94. MR 0376768 (51:12943)
  • [8] K. R. Fuller, On rings whose left modules are direct sums of finitely generated modules, Proc. Amer. Math. Soc. 54 (1976), 39-44. MR 0393133 (52:13943)
  • [9] L. Gruson and C. U. Jensen, Deux applications de la notion de L-dimension, C. R. Acad. Sci. Paris Sér. A 282 (1976), 23-24. MR 0401880 (53:5706)
  • [10] C. M. Ringel and H. Tachikawa, QF-3 rings, J. Reine Angew. Math. 272 (1975), 49-72. MR 0379578 (52:483)
  • [11] R. B. Warfield, Jr., Purity and algebraic compactness for modules, Pacific J. Math. 28 (1969), 699-719. MR 0242885 (39:4212)
  • [12] -, A Krull-Schmidt theorem for infinite sums of modules, Proc. Amer. Math. Soc. 22 (1969), 460-465. MR 0242886 (39:4213)
  • [13] -, Rings whose modules have nice decompositions, Math. Z. 125 (1972), 187-192. MR 0289487 (44:6677)
  • [14] W. Zimmermann, Rein injektive direkte Summen von Moduln, Comm. Algebra 5 (1977), 1083-1117. MR 0450327 (56:8623)
  • [15] B. Zimmermann-Huisgen and W. Zimmermann, Algebraically compact rings and modules, Math. Z. 161 (1978), 81-93. MR 0498722 (58:16792)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A64

Retrieve articles in all journals with MSC: 16A64


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0542083-3
Keywords: Indecomposable module, ring of finite representation type, exchange property, cancellation property
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society