ISOMETRIES ON L^p SPACES AND COPIES OF L^p SHIFTS

STEPHEN L. CAMPBELL, GARY D. FAULKNER AND MARIANNE L. GARDNER

Abstract. Necessary and sufficient conditions are given on an isometry V in an L^p space so that there exists an invariant subspace M such that V restricted to M is isometrically equivalent to the unilateral shift on L^p.

1. Introduction. The unilateral shift on L^p is probably the best known and studied of the nonunitary isometries on L^p spaces. Even on L^p, isometries V such that $\cap V^n = \{0\}$ need not be isometric to the unilateral shift on L^p. This note will characterize when an isometry on L^p contains (in the appropriate sense) a copy of the unilateral shift on L^p. The question of in what sense isometries in more general Banach spaces look like shifts is discussed in [1].

In what follows L^p will be $L^p(X, \Sigma, \mu)$ where (X, Σ, μ) is a σ-finite measure space, $1 < p < \infty, p \neq 2$. L^p is, of course, L^p with X the nonnegative integers, Σ all subsets of X, and μ counting measure. The unilateral shift S on L^p is given by $S(\alpha_0, \alpha_1, \ldots) = (0, \alpha_0, \alpha_1, \ldots)$. V will always denote an isometry on L^p. From [2] there exists a regular set isomorphism $T: \Sigma \rightarrow \Sigma$ so that

$$(Vf)(x) = h(x)(T(f))(x). \tag{1}$$

Formula (1) should be interpreted in the following sense.

If $C \in \Sigma$, let 1_C denote its characteristic function. Then $T(1_C) = 1_{T(C)}$ and T is extended to simple functions by linearity. The map V as expressed in (1) is an isometry on L^p simple functions and hence extends to all of L^p. Without loss of generality, we may assume $\mu(\{x|h(x) = 0\}) = 0$. Note that $T(1_C)$ need not be in L^p even if 1_C is. The only requirement is that $\|h1_{T(C)}\| = (\mu(C))^{1/p}$, so that $hT(1_C)$ is in L^p. It should also be pointed out that the characterization of h in [2] is vague. It is not necessary that $|h| = d\mu^*/d\mu$, $\mu^* = \mu \circ T^{-1}$. It is sufficient that

$$\int_{T(A)} |h|^p d\mu = \int_{T(A)} \frac{d\mu^*}{d\mu} d\mu, \quad A \in \Sigma.$$

If $T(\Sigma)$ is a properly smaller Boolean algebra, then one need not have $|h|^p = d\mu^*/d\mu$.

All statements about sets and functions are modulo sets of μ-measure zero. For $f \in L^p$, supp(f) denotes its support.
2. Main results. The main result of this note is the following characterization of when an isometry on L^p 'contains' a copy of S on l^p.

Theorem 1. Suppose that $V: L^p \to L^p$ is an isometry. Then the following statements (I)–(III) are equivalent.

(I) There exists a subspace $M \subseteq L^p$ such that:

(i) $VM \subseteq M$,

(ii) M is isometric to l^p,

(iii) $US = VU$ where U is the isometric map of (ii), $U: l^p \to M$;

(II) There exists a set $A \in \Sigma$ such that $T(A) \subseteq A$, $0 < \mu(A \setminus T(A)) < \infty$;

(III) There exists an $f \in L^p$ such that $\text{supp}(Vf) \subseteq \text{supp}(f)$ and $0 < \mu(\text{supp}(f) \setminus \text{supp}(Vf)) < \infty$.

Proof. We shall prove (I) \Rightarrow (II) first. Assume that (I) holds. Let $e_i = 1_{(i)} \in l^p$. Let $A_i = \text{supp}(U1_{(i)})$. Note that $A_i \cap A_j = \emptyset$ if $i \neq j$ since

$$\|Ue_i \pm Ue_j\|^p = \|e_i \pm e_j\|^p = \|e_i\|^p + \|e_j\|^p,$$

implies $Ue_i Ue_j = 0$ almost everywhere μ [2]. Note also that from (iii) $T(A_i) \subseteq A_{i+1}$. If $\mu(A_i) < \infty$, let $A = \cup A_i$ and (II) holds. If A_1 is not of finite measure, let E_i be a subset of A_i such that $\mu(E_i) < \infty$. (E_i exists since A_1 is the support of an L^p function.) Let $A = E_1 \cup \cup_{n=1}^{\infty} T^n(E_i)$. Then (II) holds. To see that (II) \Rightarrow (I), assume that (II) holds. First we need to show that:

If $f \in L^p$ and $\text{supp}(f) \subseteq D$, then $\text{supp}(V^n f) \subseteq T^n(D)$ for $n > 1$. (2)

To prove (2), it suffices to prove the $n = 1$ case. Then $n > 1$ follows by induction. If $g \in L^p$ is a simple function, so that

$$g = \sum_{i=1}^{n} a_i \delta_{E_i}, \quad E_i \cap E_j = \emptyset \text{ if } i \neq j, \quad a_i \neq 0,$$

then

$$Vg = \sum_{i=1}^{n} a_i V1_{E_i} = \sum_{i=1}^{n} a_i h(x) 1_{T(E_i)}.$$

(Note that $T(E_i) \cap T(E_j) = \emptyset$.) Thus $\text{supp}(Vg) = \cup T(E_i) \subseteq T(D)$ if $\cup E_i \subseteq D$. Thus (2) holds for simple functions. Now if $f \in L^p$, chose simple functions f_n so that $f_n \to f$ in L^p norm and $\text{supp}(f_n) \subseteq \text{supp}(f) \subseteq D$. But $Vf_n \to Vf$. Take a subsequence so that $Vf_n \to Vf$ almost everywhere. But $\text{supp}(Vf_n) \subseteq T(D)$. Thus $\text{supp}(Vf) \subseteq T(D)$ and (2) follows. By a similar argument using simple functions it is straightforward to show:

If $f, g \in L^p$ and $\text{supp}(g) = \text{supp}(f)$, then $\text{supp}(Vg) = \text{supp}(Vf)$. (3)

Now to prove (I). By assumption there is an $A \in \Sigma$ such that $T(A) \subseteq A$, $0 < \mu(A \setminus T(A)) < \infty$. Let $B = A \setminus T(A)$. Since $T(A) \subseteq A$, $T^n(A) \subseteq T(A)$ for $n > 1$. Thus $B \cap T^n(B) = \emptyset$. Since T is regular, this implies that $T^k(B) \cap T^l(B) = \emptyset$ for $k \neq l$. Let $g = ah1_B$ where $a = \|h1_B\|^{-1}$. From (2), (3), it follows that $\text{supp}(V^n g) \cap \text{supp}(V^m f) = \emptyset$ for $m \neq n$. Let $g_n = V^n g$. For $\sum a_n e_n \in l^p$, define $U: l^p \to L^p$ by $U(\sum a_n e_n) = \sum a_n g_n$. Let $M = U1^p$. Since $\text{supp}(g_n) \cap \text{supp}(g_m) = \emptyset$ if $n \neq m$ and $\|g_n\| = 1$, U is an isometry so that
(ii) holds. That (i) and (ii) hold is clear and (I) follows. That (III) is equivalent to (I) and (II) is now clear. □

3. Comments. A natural question is whether (I) always holds; that is, whether every isometry on an L^p space contains a copy of the unilateral shift on l^p. If V is unitary, the answer is, in general, no. The identity is an example. What about nonunitary isometries? Do they always satisfy (I)? We shall show that the answer is no for general L^p and affirmative for nonunitary isometries on l^p.

Example. Let $X = [0, 2]$, and μ be Lebesgue measure. For $A \subseteq \Sigma$, define $T(A) = \frac{1}{2} A \cup \frac{1}{2} A + 1$. (Here $\frac{1}{2} A = \{\frac{1}{2} a : a \in A\}$, $\frac{1}{2} A + 1 = \{\frac{1}{2} a + 1 : a \in A\}$.) Clearly T is a measure-preserving transformation of Σ into itself. Let h be identically 1 and define V by (1). Then V is an isometry of L^p into itself. Let $g = 1_{[0,1]} - 1_{[1,2]}$. Now $\int_{T(A)} g \, d\mu = 0$ for any set $A \subseteq \Sigma$. Hence $\int (Vf)g \, d\mu = 0$ for all $f \in L^p$. Since $g \in (L^p)^*$, we have V is not onto and hence V is not unitary. But V cannot satisfy (II). For suppose there existed $A \subseteq \Sigma$ such that $T(A) \subset A$, $0 < \mu(A \cap T(A)) < \infty$. Let $B = A \setminus T(A)$. Then $2 > \mu(\bigcup T^n(B)) = \sum \mu(T^n(B)) = \sum \mu(B)$ which is impossible. Note that this V also satisfies $\text{R}(V^n) = \{0\}$.

This example is a special case of the more general fact that:

Proposition. If $V : L^p \to L^p$ is an isometry and satisfies (II), then either $\mu(X)$ is not finite or T is not measure-preserving.

We conclude by showing that:

Theorem 2. If V is a nonunitary isometry on l^p, then it satisfies (I).

Proof. Represent V as in (1), and assume that V is not unitary. Without loss of generality, we may assume $i \not= T^m(i)$ for all i and $m > 0$. (These unitary summands may be discarded, if present.) Pick an i. If $i \not\in T^m(i)$ for all $m > 0$, then (II) holds. Thus we may assume that $i \in T^m(i)$ for some m. Take m to be the least such m. If $m = 1$, let $B = T(i) \setminus \{i\}$. Then $i \not\in T(B)$ and by induction $i \not\in T^m(B)$ for all m. Hence $B \cap T^m(B) = \emptyset$ for all $m > 0$ and (II) holds for $A = \bigcup T^m(C)$, C any finite subset of B. Thus we may assume $m > 1$. Now there exist distinct i_1, \ldots, i_{m-1} such that $i \in T(i_{k-1})$, $i_0 = i$, $i \in T(i_{m-1})$. The distinctness of the i_j follows from the fact that m is minimal. Let $I = \{i, i_1, \ldots, i_{m-1}\}$, and $B = T(I) \setminus I$. Note that by assumption $B \neq \emptyset$. Now $I \cap C = \emptyset$ implies $I \cap T(C) = \emptyset$ for any set C. But $B \cap I = \emptyset$. Hence $T^n(B) \cap I = \emptyset$ for all $n > 0$. But then $B \cap T^n(B) = \emptyset$ for all $n > 0$ and again (II) holds. □

Bibliography

Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27650