Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Isometries on $ L\sp{p}$ spaces and copies of $ l\sp{p}$ shifts


Authors: Stephen L. Campbell, Gary D. Faulkner and Marianne L. Gardner
Journal: Proc. Amer. Math. Soc. 77 (1979), 198-200
MSC: Primary 47A15; Secondary 47B37
DOI: https://doi.org/10.1090/S0002-9939-1979-0542084-5
MathSciNet review: 542084
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Necessary and sufficient conditions are given on an isometry V in an $ {L^p}$ space so that there exists an invariant subspace M such that V restricted to M is isometrically equivalent to the unilateral shift on $ {l^p}$.


References [Enhancements On Off] (What's this?)

  • [1] S. L. Campbell, G. D. Faulkner and Robert Sine, Isometries, projections, and Wold decompositions (to appear). MR 579023 (81k:47041)
  • [2] J. Lamperti, On the isometries of certain function-spaces, Pacific J. Math. 2 (1958), 459-466. MR 0105017 (21:3764)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A15, 47B37

Retrieve articles in all journals with MSC: 47A15, 47B37


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0542084-5
Keywords: Isometries, invariant subspaces, shifts in Banach spaces
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society