NEW DECIDABLE FIELDS OF ALGEBRAIC NUMBERS

L. VAN DEN DRIES

Abstract. A formally real field of algebraic numbers is constructed which has decidable elementary theory and does not have a real closed or p-adi-cally closed subfield.

Introduction. In his list of problems [7], A. Robinson remarked (p. 501, loc. cit.): "I do not know of any proper subfield of the field of algebraic numbers, other than the fields of algebraic real or p-adic numbers, that has been shown to be decidable". Taken literally, this remark is rather strange, because the well-known results of Ax-Kochen-Eršov of 1964–1965 provide several decidable fields of algebraic numbers other than the fields mentioned by Robinson. But each of these is henselian with respect to a certain nontrivial valuation, so has a p-adically closed subfield for some prime p. (See [3] for the notion of p-adically closed field. A field of algebraic numbers is p-adically closed iff it is isomorphic with the field of algebraic p-adic numbers, similarly as a field of algebraic numbers is real closed iff it is isomorphic with the field of real algebraic numbers.)

It is also easy to see that a field extension of finite degree over a decidable field of algebraic numbers is a decidable field. But applying this result to one of the fields indicated above gives again fields with a p-adically closed or real closed subfield.

So probably Robinson wanted a decidable field of algebraic numbers which has no p-adically closed or real closed subfield. In §2 we will construct such fields.

I am indebted to Jan Denef for calling my attention to the question answered in this paper.

1. Preliminaries. In this and the next section, n is a fixed integer larger than 1. We define OF_n as the 1st order theory whose models are the structures (K, P_1, \ldots, P_n) with (K, P_i) an ordered field, i.e. K is a field and $P_i + P_i \subseteq P_i$, $P_i \cdot P_i \subseteq P_i$, $P_i \cap P_i = \{0\}$, $P_i \cup (-P_i) = K$ $(1 < i < n)$. The language of OF_n is $\{0, 1, +, -, P_1, \ldots, P_n\}$, where 0, 1, +, -, are the usual ring operation symbols and P_1, \ldots, P_n are unary predicate symbols. The models of OF_n are also called n-ordered fields.

Let us make a list of facts which we will need.
Fact 1 (from [1, p. 54]; see also [5] for the notion of ‘model companion’). \overline{OF}_n has a model companion \overline{OF}_n. The models of \overline{OF}_n are those n-ordered fields (K, P_1, \ldots, P_n) which satisfy:

(a) P_i and P_j induce different (interval) topologies on K, for all $i \neq j$.

(b) For each irreducible $f(X, Y) \in K[X, Y]$, monic in Y, and each $a \in K$ such that $f(a, Y)$ changes sign on K with respect to each of the orderings P_i, there exists $(c, d) \in K \times K$ with $f(c, d) = 0$.

(In the formulation of [1, p. 54], $f(X, Y)$ in (b) was not restricted to be monic in Y, but the usual ‘linear transformation of variables’ argument easily shows that we need only consider $f(X, Y)$ which are monic in Y.)

\overline{OF}_n is even a decidable theory (cf. [1, p. 74]), but I do not see how this can be used to obtain a decidable model of \overline{OF}_n which is algebraic over Q. In §2 we shall construct just such a model.

Fact 2. Suppose K is an algebraic number field, P_1, \ldots, P_n are different orderings on K, $f(X, Y) \in K[X, Y]$ is monic in Y and irreducible, and $a \in K$ such that $f(a, Y)$ changes sign on K w.r.t. each of the orderings P_i on K. Then there is a $b \in K$ such that $f(b, Y)$ still changes sign on K w.r.t. each P_i, and $f(b, Y) \in K[Y]$ is irreducible.

Because an algebraic number field is Hilbertian (cf. [4, Chapter 8]), and its different orderings induce different interval topologies, this fact follows from: if τ_1, \ldots, τ_n are different nondiscrete V-topologies on a Hilbertian field K and for each $i \in \{1, \ldots, n\}$ U_i is a nonempty τ_i-open subset of K, while H is a Hilbert set over K, then $U_1 \cap \cdots \cap U_n \cap H \neq \emptyset$ (cf. [1, p. 62]).

Fact 3. There is an algorithm which, given $f(Y) \in Q[Y] \setminus Q$, decides whether $f(Y)$ is irreducible in $Q[Y]$. (In [8, p. 79] such an algorithm is given for $Z[Y]$, and by Gauss’ lemma we get one for $Q[Y]$.)

Let \bar{Q} be in the following a fixed algebraic closure of Q. An algebraic number field is then any subfield K of \bar{Q} with $[K : Q] < \infty$. We also fix a 1-1 map of \bar{Q} onto a recursive subset of $\omega = \{0, 1, 2, \ldots\}$, such that addition and multiplication on \bar{Q} correspond under this map with recursive functions. Let us call the image of $a \in \bar{Q}$ under this map the index of a. The existence of such an indexing is proved by Rabin in [6].

The phrase ‘given $a \in \bar{Q}$’ will simply mean: ‘given the index of an element a of \bar{Q}’. Similarly a polynomial in $\bar{Q}[X_1, \ldots, X_n]$ is given if its degree d is given and the vector of the coefficients of its monomials up to degree d is given.

An index of an algebraic number field K is the index of a generator K over Q, i.e. of an $a \in \bar{Q}$ with $K = Q(a)$. ‘Given an algebraic number field’ will mean: ‘given an index of an algebraic number field’.

Fact 4. There are algorithms (I), (II), (III), (IV), (V) such that:

(1) given $a \in \bar{Q}$, (I) determines the minimum polynomial of a over Q;

(2) given $a \in \bar{Q}$, (II) determines whether $a \in Q$ holds;
(3) given \(a, b \in \mathbb{Q}\), (III) determines \(c \in \mathbb{Q}\) with \(\mathbb{Q}(a, b) = \mathbb{Q}(c)\);
(4) given \(a, b \in \mathbb{Q}\), (IV) determines whether \(\mathbb{Q}(a) = \mathbb{Q}(b)\);
(5) given an algebraic number field \(K\) and \(f \in K[Y] \setminus K\), (V) decides whether \(f\) is irreducible in \(K[Y]\).

We obtain (I) from Fact 3, (II) by using (I) and looking at the degree of the minimum polynomial. Given \(a, b \in \mathbb{Q}\), there is a \(c \in \mathbb{Q}\) with \(\mathbb{Q}(a, b) = \mathbb{Q}(c)\), hence such a \(c\) will be found by trying all possibilities, so (III) exists. Computing the degrees of \(\mathbb{Q}(a)\), \(\mathbb{Q}(b)\) and \(\mathbb{Q}(a, b)\) over \(\mathbb{Q}\) by using (I) and (III) and looking at whether they are equal, gives (IV). A similar argument gives (V).

Suppose now that \(a \in \mathbb{Q}\) has minimum polynomial \(f(X) \in \mathbb{Q}[X]\) and that \(f(X)\) has precisely \(r_f\) real roots and that \(r_1, \ldots, r_n\) are integers with \(1 < r_1 < r_2, \ldots, 1 < r_n < r_f\). Let \(\alpha \in \omega\) be the index of \(a\). Then \((\alpha, r_1, \ldots, r_n)\) is said to be an index of the \(n\)-ordered field \((\mathbb{Q}(a), P_1, \ldots, P_n)\), where for each \(i = 1, \ldots, n\), \(P_i\) is the unique ordering on \(\mathbb{Q}(a)\) such that \(a\) is the \(r_i\)th root of \(f(X)\) in the real closure of \((\mathbb{Q}(a), P_i)\), these roots being numbered in increasing order. Using (IV) and Sturm’s theorem, the following will be clear:

Fact 5. There is an algorithm which, given \((\alpha, r_1, \ldots, r_n) \in \omega^{n+1}\), decides whether it is an index of an \(n\)-ordered field \(\mathbb{K}\), and if so, computes the unique index \((\beta, s_1, \ldots, s_n)\) of \(\mathbb{K}\) with minimal \(\beta\).

Let us call this index \((\beta, s_1, \ldots, s_n)\) the minimal index of \(\mathbb{K}\). It will now be clear what the phrase ‘given an \(n\)-ordered algebraic number field’ means.

Finally we will use in §2 a fixed recursive bijection \(\pi: \omega \to \omega \times \omega\) such that the first coordinate of \(\pi(m)\) is \(< m\), for all \(m \in \omega\).

2. Construction of the field. Let \(\mathbb{F} = (F, P_1, \ldots, P_n)\) be any given \(n\)-ordered algebraic number field such that \(P_i \neq P_j\) for \(i \neq j\). We define \(\mathcal{C}\) as the set of all \(n\)-ordered algebraic number fields \(\mathbb{K}\) with \(\mathbb{F} \subset \mathbb{K}\). We fix for each \(\mathbb{K} \in \mathcal{C}\) an enumeration \(\alpha_{\mathbb{K}}: (f, a)_{f < \omega} \to \omega\) of all pairs \((f, a)\) with \(f \in K[X, Y]\) monic and of positive degree in \(Y\), and \(a \in K\) (\(K\) is the underlying field of \(\mathbb{K}\)). We suppose uniform effectiveness: there should be an algorithm which, given \(\mathbb{K} \in \mathcal{C}\) and \(j \in \omega\), constructs the pair \((f_j, a) = \alpha_{\mathbb{K}}(j)\).

Now we can construct an ascending sequence \((\mathbb{K}_m)_{m \in \omega}\) in \(\mathcal{C}\) as follows (where we write \(\mathbb{K}_m = (K_m, Q_{1,m}, \ldots, Q_{n,m})\)): \(\mathbb{K}_0 = \mathbb{F}\). Suppose \(\mathbb{K}_0 \subset \mathbb{K}_1 \subset \cdots \subset \mathbb{K}_m\) have already been constructed. Let \(\pi(m) = (i, j)\), so \(i < m\). Then \(\alpha_{\mathbb{K}_i}(j)\) is a pair \((f, a)\) with \(f \in K_i[X, Y]\) monic and of positive degree in \(Y\), and \(a \in K_i\).

If \(f(a, Y)\) does not change sign on \(K_m\) with respect to one of the orderings \(Q_{k,m}\) \((1 < k < n)\), then we put: \(\mathbb{K}_{m+1} = \mathbb{K}_m\). Suppose \(f(a, Y)\) changes sign on \(K_m\) with respect to each of the orderings \(Q_{k,m}\) on \(K_m\). Then two cases can occur:

Case 1. \(f(X, Y)\) is irreducible in \(K_m[X, Y]\). In this case, there is by Fact 2 of §1 an element \(c \in K_m\) such that \(f(c, Y) \in K_m[Y]\) is still irreducible and still
changes sign on K_m with respect to each of the n orderings $Q_{k,m}$ ($k = 1, \ldots, n$). Using (V) of Fact 4, §1, and Sturm's theorem we will certainly find such a c with the smallest possible index, and for this c we compute the root $d \in \bar{Q}$ of $f(c, Y)$ with minimal index and define: $\mathcal{K}_{m+1} = (K_m(d), Q_{1,m+1}, \ldots, Q_{n,m+1})$, where $Q_{k,m+1}$ is the unique ordering on $K_m(d)$ extending $Q_{k,m}$, such that d is the smallest root of $f(c, Y)$ in the real closure of $(K_m(d), Q_{k,m+1})$.

Case 2. $f(X, Y)$ is reducible in $K_m[X, Y]$. If this is the case we will discover this by trying out decompositions of f. If we find one, we put $\mathcal{K}_{m+1} = \mathcal{K}_m$.

By construction of the chain $(\mathcal{K}_m)_{m \in \omega}$ it is clear that the map $m \mapsto$ minimal index of K_m is recursive.

We put $\mathcal{K}_m = \bigcup_{m \in \omega} \mathcal{K}_m$, and write $\mathcal{K}_\infty = (K_\infty, Q_{1,\infty}, \ldots, Q_{n,\infty})$.

Claim 1. $K_\infty \models \overline{OF}_n$. (See §1, Fact 1.)

Proof. $Q_{1,\infty}, \ldots, Q_{n,\infty}$ are n distinct orderings on K_∞, because they extend the n distinct orderings P_1, \ldots, P_n on K_0. As they are archimedean, they induce n different interval topologies on K_∞, so (a) of Fact 1 is satisfied. Suppose now that $f(X, Y) \in K_\infty[X, Y]$ is irreducible, monic in Y, and $f(a, Y)$ changes sign on K_∞ with respect to each of the orderings $Q_{k,\infty}$, where $a \in K_\infty$. We have to show that $f(c, a) = 0$ for some $(c, a) \in K^2_\infty$. Clearly there is $(i, j) \in \omega \times \omega$ with $\alpha_{\mathcal{K}_j}(j) = (f, a)$.

Let $m \in \omega$ be such that $\pi(m) = (i, j)$. Then by construction of the sequence $(\mathcal{K}_m)_{m \in \omega}$ we have: $K_{m+1} \models \exists c \exists d, f(c, d) = 0$, so $K_\infty \models \exists c \exists d, f(c, d) = 0$.

Claim 2. $\text{Th}(\mathcal{K}_\infty)$ is decidable.

Proof. By model completeness of \overline{OF}_n and Claim 1 we have that $\overline{OF}_n \cup \text{Diag}(\mathcal{K}_\infty)$ is a complete theory. But $\text{Diag}(\mathcal{K}_\infty) = \bigcup \{ \text{Diag } \mathcal{K}_m | m \in \omega \}$, so $\text{Diag}(\mathcal{K}_\infty)$ is recursively enumerable. Hence $\overline{OF}_n \cup \text{Diag}(\mathcal{K}_\infty)$ is a complete theory with a recursively enumerable axiomatization. This implies in particular that there are two recursive functions, one enumerating $\text{Th}(\mathcal{K}_\infty)$, the other enumerating $\{ \sigma | \neg \sigma \in \text{Th}(K_\infty) \}$ (= the complement of $\text{Th}(\mathcal{K}_\infty)$ within the set of OF_n-sentences). Hence $\text{Th}(\mathcal{K}_\infty)$ is decidable.

Corollary. K_∞ is a decidable subfield of \bar{Q} and does not have any real closed or p-adically closed subfield.

(Because K_∞ is formally real, and p-adically closed fields are not formally real.)

Remark. The above arguments simply constructivize the proof of Theorem (3.1) in Chapter II of [1].

Lemma. Let the field K be an algebraic extension of Q. Then K is an atomic model of $\text{Th}(K)$. (The reader will see in the proof what this means.)

Proof. Let $(k_1, \ldots, k_m) \in K^m$. Clearly there is a formula $\theta(x_1, \ldots, x_m)$ in the language $\{ +, -, \cdot, 0, 1 \}$ which is satisfied by only finitely many m-tuples
NEW DECIDABLE FIELDS OF ALGEBRAIC NUMBERS

in K^m, among which is (k_1, \ldots, k_m). Take $M > 1$ minimal such that there is such a $\theta(x_1, \ldots, x_m)$ with $K \models (\exists M)(x_1, \ldots, x_m)\theta(x_1, \ldots, x_m) \land \theta(k_1, \ldots, k_m)$. $(\exists M)(x_1, \ldots, x_m)$ stands for: there are exactly M m-tuples such that.)

Let now $\phi(x_1, \ldots, x_m)$ be any formula with $K \models \phi(k_1, \ldots, k_m)$. We will show that $K \models \forall x_1, \ldots, \forall x_m(\theta(x_1, \ldots, x_m) \rightarrow \phi(x_1, \ldots, x_m))$. If this were not the case, then put $\Psi(x_1, \ldots, x_m) := \theta(x_1, \ldots, x_m) \land \phi(x_1, \ldots, x_m)$, and we have: $K \models (\exists M)(x_1, \ldots, x_m)\Psi(x_1, \ldots, x_m) \land \Psi(k_1, \ldots, k_m)$ for some $i > 1$, contradicting the minimality of M. So $\theta(x_1, \ldots, x_m)$ generates the type of (k_1, \ldots, k_m) with respect to $Th(A)$. \(\square\)

Corollary. Let the decidable field K be an algebraic extension of Q. Then each field extension L of K with $[L : K] < \infty$ is also a decidable field.

Proof. Let $L = K(a)$, and let $X^m + k_1X^{m-1} + \cdots + k_m$ be the minimum polynomial of a over K. Let $\theta(x_1, \ldots, x_m)$ be a generator of the type realized by (k_1, \ldots, k_m) in K (which exists by the lemma). We consider now the 1st order theory $T_{(K, \theta)}$ whose models are the structures $(L', K', k_1', \ldots, k_m')$ such that L' is a field with subfield K'; $K' \equiv K$ and $L' = K'(a')$ for some a' whose minimum polynomial over K' is $x^m + k_1'x^{m-1} + \cdots + k_m'$, and $K' \models \theta(k_1', \ldots, k_m')$. Because $Th(K)$ is decidable, $T_{(K, \theta)}$ has a recursive axiomatization. We claim that $T_{(K, \theta)}$ is a complete theory: it is easy to see that, given any sentence σ in the language of $T_{(K, \theta)}$, one can construct a sentence $\bar{\sigma}$ in the language of rings such that for every model $(L', K', k_1', \ldots, k_m')$ of $T_{(K, \theta)}$:

$$(L', K', k_1', \ldots, k_m') \models \sigma \iff (K', k_1', \ldots, k_m') \models \bar{\sigma}.$$

But for such a model we have: $Th(K', k_1', \ldots, k_m') = Th(K, k_1, \ldots, k_m)$. Combining this with the above equivalence we see that $T_{(K, \theta)}$ is complete. As it is also recursively axiomatizable, $T_{(K, \theta)}$ is decidable. Because $(L, K, k_1, \ldots, k_m) \models T_{(K, \theta)}$, $Th(L)$ is decidable. \(\square\)

Remark. I do not know whether the following converse holds. If K, L are fields, $Q \subset K \subset L, L|Q$ is algebraic, $[L : K] < \infty$ and L is a decidable field, is then K a decidable field? If Q is replaced by a finite prime field, this is true by Eršov’s classification of algebraic extensions of F_p with decidable theory (cf. [2]).

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTRECHT, UTRECHT, NETHERLANDS

Current address: Department of Mathematics, Yale University, New Haven, Connecticut 06520