NEW DECIDABLE FIELDS OF ALGEBRAIC NUMBERS

L. VAN DEN DRIES

Abstract. A formally real field of algebraic numbers is constructed which has decidable elementary theory and does not have a real closed or p-adically closed subfield.

Introduction. In his list of problems [7], A. Robinson remarked (p. 501, loc. cit.): "I do not know of any proper subfield of the field of algebraic numbers, other than the fields of algebraic real or p-adic numbers, that has been shown to be decidable". Taken literally, this remark is rather strange, because the well-known results of Ax-Kochen-Eršov of 1964–1965 provide several decidable fields of algebraic numbers other than the fields mentioned by Robinson. But each of these is henselian with respect to a certain nontrivial valuation, so has a p-adically closed subfield for some prime p. (See [3] for the notion of p-adically closed field. A field of algebraic numbers is p-adically closed iff it is isomorphic with the field of algebraic p-adic numbers, similarly as a field of algebraic numbers is real closed iff it is isomorphic with the field of real algebraic numbers.)

It is also easy to see that a field extension of finite degree over a decidable field of algebraic numbers is a decidable field. But applying this result to one of the fields indicated above gives again fields with a p-adically closed or real closed subfield.

So probably Robinson wanted a decidable field of algebraic numbers which has no p-adically closed or real closed subfield. In §2 we will construct such fields.

I am indebted to Jan Denef for calling my attention to the question answered in this paper.

1. Preliminaries. In this and the next section, n is a fixed integer larger than 1. We define OF_n as the 1st order theory whose models are the structures (K, P_1, \ldots, P_n) with (K, P) an ordered field, i.e. K is a field and $P_i + P_i \subseteq P_i$, $P_i \cdot P_i \subseteq P_i$, $P_i \cap P_i = \{0\}$, $P_i \cup (-P_i) = K$ ($1 < i < n$). The language of OF_n is $\{0, 1, +, \cdot, -, P_1, \ldots, P_n\}$, where $0, 1, +, \cdot, -$ are the usual ring operation symbols and P_1, \ldots, P_n are unary predicate symbols. The models of OF_n are also called n-ordered fields.

Let us make a list of facts which we will need.

Received by the editors September 27, 1978.

AMS (MOS) subject classifications (1970). Primary 02H15, 02G05.

© 1979 American Mathematical Society

0002-9939/79/0000-0516/$02.50

251
Fact 1 (from [1, p. 54]; see also [5] for the notion of ‘model companion’). \(O_{F_n} \) has a model companion \(\overline{O_{F_n}} \). The models of \(\overline{O_{F_n}} \) are those \(n \)-ordered fields \((K, P_1, \ldots, P_n)\) which satisfy:

(\(\alpha\)) \(P_i \) and \(P_j \) induce different (interval) topologies on \(K \), for all \(i \neq j \).

(\(\beta\)) For each irreducible \(f(X, Y) \in K[X, Y] \), monic in \(Y \), and each \(a \in K \) such that \(f(a, Y) \) changes sign on \(K \) with respect to each of the orderings \(P_i \), there exists \((c, d) \in K \times K \) with \(f(c, d) = 0 \).

(In the formulation of [1, p. 54], \(f(X, Y) \) in (\(\beta\)) was not restricted to be monic in \(Y \), but the usual ‘linear transformation of variables’ argument easily shows that we need only consider \(f(X, Y) \) which are monic in \(Y \).)

\(\overline{O_{F_n}} \) is even a decidable theory (cf. [1, p. 74]), but I do not see how this can be used to obtain a decidable model of \(\overline{O_{F_n}} \) which is algebraic over \(\mathbb{Q} \). In §2 we shall construct just such a model.

Fact 2. Suppose \(K \) is an algebraic number field, \(P_1, \ldots, P_n \) are different orderings on \(K \), \(f(X, Y) \in K[X, Y] \) is monic in \(Y \) and irreducible, and \(a \in K \) such that \(f(a, Y) \) changes sign on \(K \) w.r.t. each of the orderings \(P_i \) on \(K \). Then there is a \(b \in K \) such that \(f(b, Y) \) still changes sign on \(K \) w.r.t. each \(P_i \), and \(f(b, Y) \in K[Y] \) is irreducible.

Because an algebraic number field is Hilbertian (cf. [4, Chapter 8]), and its different orderings induce different interval topologies, this fact follows from:

if \(\tau_1, \ldots, \tau_n \) are different nondiscrete \(V \)-topologies on a Hilbertian field \(K \) and for each \(i \in \{1, \ldots, n\} \) \(U_i \) is a nonempty \(\tau_i \)-open subset of \(K \), while \(H \) is a Hilbert set over \(K \), then \(U_1 \cap \cdots \cap U_n \cap H \neq \emptyset \) (cf. [1, p. 62]).

Fact 3. There is an algorithm which, given \(f(Y) \in \mathbb{Q}[Y] \setminus \mathbb{Q} \), decides whether \(f(Y) \) is irreducible in \(\mathbb{Q}[Y] \). (In [8, p. 79] such an algorithm is given for \(\mathbb{Z}[Y] \), and by Gauss’ lemma we get one for \(\mathbb{Q}[Y] \).)

Let \(\mathbb{Q} \) be in the following a fixed algebraic closure of \(\mathbb{Q} \). An algebraic number field is then any subfield \(K \) of \(\mathbb{Q} \) with \([K : \mathbb{Q}] < \infty \). We also fix a 1-1 map of \(\mathbb{Q} \) onto a recursive subset of \(\mathbb{R} = \{0, 1, 2, \ldots\} \), such that addition and multiplication on \(\mathbb{Q} \) correspond under this map with recursive functions. Let us call the image of \(a \in \mathbb{Q} \) under this map the index of \(a \). The existence of such an indexing is proved by Rabin in [6].

The phrase ‘given \(a \in \mathbb{Q} \)’ will simply mean: ‘given the index of an element \(a \) of \(\mathbb{Q} \).’ Similarly a polynomial in \(\mathbb{Q}[X_1, \ldots, X_n] \) is given if its degree \(d \) is given and the vector of the coefficients of its monomials up to degree \(d \) is given.

An index of an algebraic number field \(K \) is the index of a generator \(K \) over \(\mathbb{Q} \), i.e. of an \(a \in \mathbb{Q} \) with \(K = \mathbb{Q}(a) \). ‘Given an algebraic number field’ will mean: ‘given an index of an algebraic number field’.

Fact 4. There are algorithms (I), (II), (III), (IV), (V) such that:

(1) given \(a \in \mathbb{Q} \), (I) determines the minimum polynomial of \(a \) over \(\mathbb{Q} \);
(2) given \(a \in \mathbb{Q} \), (II) determines whether \(a \in \mathbb{Q} \) holds;
NEW DECIDABLE FIELDS OF ALGEBRAIC NUMBERS

(3) given \(a, b \in \mathbb{Q}\), (III) determines \(c \in \mathbb{Q}\) with \(\mathbb{Q}(a, b) = \mathbb{Q}(c)\);
(4) given \(a, b \in \mathbb{Q}\), (IV) determines whether \(\mathbb{Q}(a) = \mathbb{Q}(b)\);
(5) given an algebraic number field \(K\) and \(f \in K[Y] \setminus K\), (V) decides whether \(f\) is irreducible in \(K[Y]\).

We obtain (I) from Fact 3, (II) by using (I) and looking at the degree of the minimum polynomial. Given \(a, b \in \mathbb{Q}\), there is a \(c \in \mathbb{Q}\) with \(\mathbb{Q}(a, b) = \mathbb{Q}(c)\), hence such a \(c\) will be found by trying all possibilities, so (III) exists. Computing the degrees of \(\mathbb{Q}(a)\), \(\mathbb{Q}(b)\) and \(\mathbb{Q}(a, b)\) over \(\mathbb{Q}\) by using (I) and (III) and looking at whether they are equal, gives (IV). A similar argument gives (V).

Suppose now that \(a \in \mathbb{Q}\) has minimum polynomial \(f(X) \in \mathbb{Q}[X]\) and that \(f(X)\) has precisely \(r_f\) real roots and that \(r_1, \ldots, r_n\) are integers with \(1 < r_1 < r_2, \ldots, 1 < r_n < r_f\). Let \(\alpha \in \omega\) be the index of \(a\). Then \((\alpha, r_1, \ldots, r_n)\) is said to be an index of the \(n\)-ordered field \((\mathbb{Q}(a), P_1, \ldots, P_n)\), where for each \(i = 1, \ldots, n\), \(P_i\) is the unique ordering on \(\mathbb{Q}(a)\) such that \(a\) is the \(r_i\)th root of \(f(X)\) in the real closure of \((\mathbb{Q}(a), P_i)\), these roots being numbered in increasing order. Using (IV) and Sturm's theorem, the following will be clear:

Fact 5. There is an algorithm which, given \((\alpha, r_1, \ldots, r_n) \in \omega^{n+1}\), decides whether it is an index of an \(n\)-ordered field \(\mathcal{K}\), and if so, computes the unique index \((\beta, s_1, \ldots, s_n)\) of \(\mathcal{K}\) with minimal \(\beta\).

Let us call this index \((\beta, s_1, \ldots, s_n)\) the minimal index of \(\mathcal{K}\). It will now be clear what the phrase 'given an \(n\)-ordered algebraic number field' means.

Finally we will use in §2 a fixed recursive bijection \(\pi: \omega \rightarrow \omega \times \omega\) such that the first coordinate of \(\pi(m)\) is \(< m\), for all \(m \in \omega\).

2. Construction of the field. Let \(\mathcal{F} = (F, P_1, \ldots, P_n)\) be any given \(n\)-ordered algebraic number field such that \(P_i \neq P_j\) for \(i \neq j\). We define \(\mathcal{C}\) as the set of all \(n\)-ordered algebraic number fields \(\mathcal{K}\) with \(\mathcal{F} \subset \mathcal{K}\). We fix for each \(\mathcal{K} \in \mathcal{C}\) an enumeration \(\alpha_{\mathcal{K}}: (f, a)_{j \in \omega}\) of all pairs \((f, a)\) with \(f \in K[X, Y]\) monic and of positive degree in \(Y\), and \(a \in K\) (\(K\) is the underlying field of \(\mathcal{K}\)). We suppose uniform effectiveness: there should be an algorithm which, given \(\mathcal{K} \in \mathcal{C}\) and \(j \in \omega\), constructs the pair \((f_j, a_j) = \alpha_{\mathcal{K}}(j)\).

Now we can construct an ascending sequence \((\mathcal{K}_m)_{m \in \omega}\) in \(\mathcal{C}\) as follows (where we write \(\mathcal{K}_m = (K_m, Q_1, \ldots, Q_{n,m})\)): \(\mathcal{K}_0 = \mathcal{F}\). Suppose \(\mathcal{K}_0 \subset \mathcal{K}_1 \subset \cdots \subset \mathcal{K}_m\) have already been constructed. Let \(\pi(m) = (i, j)\), so \(i < m\). Then \(\alpha_{\mathcal{K}_i}(j)\) is a pair \((f, a)\) with \(f \in K[i, X, Y]\), monic and of positive degree in \(Y\), and \(a \in K_i\).

If \(f(a, Y)\) does not change sign on \(K_m\) with respect to one of the orderings \(Q_k, m (1 < k < n)\), then we put: \(\mathcal{K}_{m+1} = \mathcal{K}_m\). Suppose \(f(a, Y)\) changes sign on \(K_m\) with respect to each of the orderings \(Q_{k,m}\) on \(K_m\). Then two cases can occur:

Case 1. \(f(X, Y)\) is irreducible in \(K_m[X, Y]\). In this case, there is by Fact 2 of §1 an element \(c \in K_m\) such that \(f(c, Y) \in K_m[Y]\) is still irreducible and still
changes sign on K_n with respect to each of the n orderings $Q_{k,m}$ ($k = 1, \ldots, n$). Using (V) of Fact 4, §1, and Sturm’s theorem we will certainly find such a c with the smallest possible index, and for this c we compute the root $d \in \bar{Q}$ of $f(c, Y)$ with minimal index and define: $K_{m+1} = (K_m(d), Q_{1,m+1}, \ldots, Q_{n,m+1})$, where $Q_{k,m+1}$ is the unique ordering on $K_m(d)$ extending $Q_{k,m}$, such that d is the smallest root of $f(c, Y)$ in the real closure of $(K_m(d), Q_{k,m+1})$.

Case 2. $f(X, Y)$ is reducible in $K_m[X, Y]$. If this is the case we will discover this by trying out decompositions of f. If we find one, we put $K_{m+1} = K_m$. By construction of the chain $(K_m)_m$ it is clear that the map $m \mapsto$ minimal index of K_m is recursive.

We put $K_m = \bigcup_{m \in \omega} K_m$, and write $K_{\omega} = (K_{\omega}, Q_{1,\omega}, \ldots, Q_{n,\omega})$.

Claim 1. $K_{\omega} \models \overline{OF_n}$. (See §1, Fact 1.)

Proof. $Q_{1,\omega}, \ldots, Q_{n,\omega}$ are n distinct orderings on K_{ω}, because they extend the n distinct orderings P_1, \ldots, P_n on K_0. As they are archimedean, they induce n different interval topologies on K_{ω}, so (a) of Fact 1 is satisfied. Suppose now that $f(X, Y) \in K_{\omega}[X, Y]$ is irreducible, monic in Y, and $f(a, Y)$ changes sign on K_{ω} with respect to each of the orderings $Q_{k,\omega}$, where $a \in K_{\omega}$. We have to show that $f(c, d) = 0$ for some $(c, d) \in K_2$. Clearly there is $(i, j) \in \omega \times \omega$ with $\alpha_{\omega}(j) = (f, a)$.

Let $m \in \omega$ be such that $\pi(m) = (i, j)$. Then by construction of the sequence $(K_m)_m$ we have: $K_{m+1} \models \exists c \exists d, f(c, d) = 0$, so $K_{\omega} \models \exists c \exists d, f(c, d) = 0$.

Claim 2. Th(K_{ω}) is decidable.

Proof. By model completeness of $\overline{OF_n}$ and Claim 1 we have that $\overline{OF_n} \cup \text{Diag}(K_{\omega})$ is a complete theory. But $\text{Diag}(K_{\omega}) = \bigcup \{ \text{Diag } K_m | m \in \omega \}$, so $\text{Diag}(K_{\omega})$ is recursively enumerable. Hence $\overline{OF_n} \cup \text{Diag}(K_{\omega})$ is a complete theory with a recursively enumerable axiomatization. This implies in particular that there are two recursive functions, one enumerating Th(K_{ω}), the other enumerating $\{ \sigma | \neg \sigma \in \text{Th}(K_{\omega}) \} = \text{the complement of Th}(K_{\omega})$ within the set of $\overline{OF_n}$-sentences). Hence Th(K_{ω}) is decidable.

Corollary. K_{ω} is a decidable subfield of \bar{Q} and does not have any real closed or p-adically closed subfield.

(Because K_{ω} is formally real, and p-adically closed fields are not formally real.)

Remark. The above arguments simply constructivize the proof of Theorem (3.1) in Chapter II of [1].

Lemma. Let the field K be an algebraic extension of Q. Then K is an atomic model of Th(K). (The reader will see in the proof what this means.)

Proof. Let $(k_1, \ldots, k_m) \in K^m$. Clearly there is a formula $\theta(x_1, \ldots, x_m)$ in the language $\{ +, \cdot, -, 0, 1 \}$ which is satisfied by only finitely many m-tuples
NEW DECIDABLE FIELDS OF ALGEBRAIC NUMBERS

in \(K^m \), among which is \((k_1, \ldots, k_m)\). Take \(M > 1 \) minimal such that there is such a \(\theta(x_1, \ldots, x_m) \) with \(K \models (\exists^M(x_1, \ldots, x_m)\theta(x_1, \ldots, x_m)) \land \theta(k_1, \ldots, k_m) \). \((\exists^M(x_1, \ldots, x_m) \) stands for: there are exactly \(M \) \(m \)-tuples such that.)

Let now \(\phi(x_1, \ldots, x_m) \) be any formula with \(K \models \phi(k_1, \ldots, k_m) \). We will show that \(K \models \forall x_1, \ldots, \forall x_m(\theta(x_1, \ldots, x_m) \rightarrow \phi(x_1, \ldots, x_m)) \). If this were not the case, then put \(\Psi(x_1, \ldots, x_m) := \theta(x_1, \ldots, x_m) \land \phi(x_1, \ldots, x_m) \), and we have: \(K \models (\exists^{M-1}(x_1, \ldots, x_m)\Psi(x_1, \ldots, x_m)) \land \Psi(k_1, \ldots, k_m) \) for some \(i > 1 \), contradicting the minimality of \(M \). So \(\theta(x_1, \ldots, x_m) \) generates the type of \((k_1, \ldots, k_m)\) with respect to \(\text{Th}(A) \). \(\square \)

Corollary. Let the decidable field \(K \) be an algebraic extension of \(Q \). Then each field extension \(L \) of \(K \) with \([L : K] < \infty\) is also a decidable field.

Proof. Let \(L = K(\alpha) \), and let \(X^m + k_1X^{m-1} + \cdots + k_m \) be the minimum polynomial of \(\alpha \) over \(K \). Let \(\theta(x_1, \ldots, x_m) \) be a generator of the type realized by \((k_1, \ldots, k_m)\) in \(K \) (which exists by the lemma). We consider now the 1st order theory \(T_{(K,\theta)} \) whose models are the structures \((L', K', k_1', \ldots, k_m')\) such that \(L' \) is a field with subfield \(K' \); \(K' \equiv K \) and \(L' = K'(\alpha') \) for some \(\alpha' \) whose minimum polynomial over \(K' \) is \(X^m + k_1'X^{m-1} + \cdots + k_m' \), and \(K' \models \theta(k_1', \ldots, k_m') \). Because \(\text{Th}(K) \) is decidable, \(T_{(K,\theta)} \) has a recursive axiomatization. We claim that \(T_{(K,\theta)} \) is a complete theory: it is easy to see that, given any sentence \(\sigma \) in the language of \(T_{(K,\theta)} \), one can construct a sentence \(\bar{\sigma} \) in the language of rings such that for every model \((L', K', k_1', \ldots, k_m')\) of \(T_{(K,\theta)} \):

\[
(L', K', k_1', \ldots, k_m') \models \sigma \iff (K', k_1', \ldots, k_m') \models \bar{\sigma}.
\]

But for such a model we have: \(\text{Th}(K', k_1', \ldots, k_m') = \text{Th}(K, k_1, \ldots, k_m) \). Combining this with the above equivalence we see that \(T_{(K,\theta)} \) is complete. As it is also recursively axiomatizable, \(T_{(K,\theta)} \) is decidable. Because \((L, K, k_1, \ldots, k_m) \models T_{(K,\theta)} \), \(\text{Th}(L) \) is decidable. \(\square \)

Remark. I do not know whether the following converse holds. If \(K, L \) are fields, \(Q \subset K \subset L \), \(L|Q \) is algebraic, \([L : K] < \infty\) and \(L \) is a decidable field, is then \(K \) a decidable field? If \(Q \) is replaced by a finite prime field, this is true by Eršov’s classification of algebraic extensions of \(F_p \) with decidable theory (cf. [2]).

References

Department of Mathematics, University of Utrecht, Utrecht, Netherlands

Current address: Department of Mathematics, Yale University, New Haven, Connecticut 06520