Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Sign compatible expressions for minors of the matrix $ I-A$

Author: D. J. Hartfiel
Journal: Proc. Amer. Math. Soc. 77 (1979), 304-308
MSC: Primary 15A48; Secondary 15A45
MathSciNet review: 545585
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A = ({a_{ij}})$ be an $ n \times n$ nonnegative matrix having row sums less than or equal to one. This paper shows that the ijth minor of $ I - A$ can be expressed as

$\displaystyle {( - 1)^{i + j}}\sum {\Pi {r_k}{a_{pq}}} $


$\displaystyle {r_k} = 1 - \sum\limits_{s = 1}^n {{a_{ks}}} $

and each $ \Pi {r_k}{a_{pq}}$ is a product of exactly $ n - 1$ numbers taken from $ {r_k},{a_{pq}}$ for $ k,p,q = 1, \ldots ,n$. This theorem is then used to obtain perturbation results concerning the matrix $ I - A$.

References [Enhancements On Off] (What's this?)

  • [1] F. R. Gantmacher, The theory of matrices. Vol. 2, Chelsea, New York, 1960.
  • [2] Sailes Kumar Sengupta, Comparison of eigenvectors of irreducible stochastic matrices, Linear Algebra and Appl. 12 (1975), no. 2, 101–110. MR 0382313

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 15A48, 15A45

Retrieve articles in all journals with MSC: 15A48, 15A45

Additional Information

Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society