ON THE CLASSIFICATION OF FINITE SIMPLE GROUPS
BY THE NUMBER OF INVOLUTIONS

MARCEL HERZOG

Abstract. Simple groups with \(k \) involutions, where \(k \equiv 1 \) (modulo 4), are completely determined.

The aim of this note is to prove the following:

Theorem. Let \(G \) be a finite simple group with \(I \) involutions and suppose that \(I \equiv 1 \) (mod 4). Then one of the following holds:

(a) \(I = 1 \) and \(G \) is cyclic of order 2,
(b) \(I = 105 \) and \(G \cong A_7 \),
(c) \(I = 165 \) and \(G \cong M_{11} \),
(d) \(I = \frac{q(q+\epsilon)}{2} \), and \(G \cong \text{PSL}(2, q) \), where \(q = p^n > 3 \) is a power of an odd prime, \(\epsilon = 1 \) or \(-1 \) and \(q \equiv \epsilon \) (mod 8),
(e) \(I = q^2(q^2 + q + 1) \) and \(G \cong \text{PSL}(3, q) \), where \(q = p^n \) is a power of an odd prime and \(q \equiv -1 \) (mod 4),
(f) \(I = q^2(q^2 - q + 1) \) and \(G \cong \text{PSL}(3, q) \), where \(q = p^n \) is a power of an odd prime and \(q \equiv 1 \) (mod 4).

Proof. By [4], a Sylow 2-subgroup of \(G \) is cyclic, generalized quaternion, dihedral of order \(> 8 \) or quasi-dihedral. In the cyclic case we get (a). A generalized quaternion Sylow 2-subgroup is impossible by [2] and in the dihedral or quasi-dihedral cases we get (b)–(f) by [3] and [1].

It is easy to check the following:

Corollary. Each of the above mentioned simple groups is characterized by the number of its involutions. In particular, \(M_{11} \) is the unique simple group with 165 involutions and \(A_7 \) is the unique simple group with 105 involutions.

Added in Proof. The groups \(A_8 \) and \(\text{PSL}(3, 4) \) are of the same order and each has 315 involutions. Conjecture: if two simple groups have the same number of involutions, then they are of the same order.

Bibliography

Received by the editors February 13, 1979.

AMS (MOS) subject classifications (1970). Primary 20D05.

© 1979 American Mathematical Society

313

Department of Mathematics, Tel-Aviv University, Tel-Aviv, Israel