Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the classification of finite simple groups by the number of involutions


Author: Marcel Herzog
Journal: Proc. Amer. Math. Soc. 77 (1979), 313-314
MSC: Primary 20D05
DOI: https://doi.org/10.1090/S0002-9939-1979-0545587-2
MathSciNet review: 545587
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Simple groups with k involutions, where $ k \equiv 1$ (modulo 4), are completely determined.


References [Enhancements On Off] (What's this?)

  • [1] J. L. Alperin, R. Brauer and D. Gorenstein, Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups, Trans. Amer. Math. Soc. 151 (1970), 1-261. MR 0284499 (44:1724)
  • [2] R. Brauer and M. Suzuki, On finite groups of even order whose 2-Sylow group is a quaternion group, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 1757-1759. MR 0109846 (22:731)
  • [3] D. Gorenstein and J. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups. I, II, III, J. Algebra 2 (1965), 85-151, 218-270, 354-393. MR 0177032 (31:1297a)
  • [4] M. Herzog, Counting group elements of order p modulo $ {p^2}$, Proc. Amer. Math. Soc. 66 (1977), 247-250. MR 0466316 (57:6196)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20D05

Retrieve articles in all journals with MSC: 20D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0545587-2
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society