Some decidable Diophantine problems: positive solution to a problem of Davis, Matijasevič and Robinson

Author:
Moshe Koppel

Journal:
Proc. Amer. Math. Soc. **77** (1979), 319-323

MSC:
Primary 10N05; Secondary 03B25, 10B99

DOI:
https://doi.org/10.1090/S0002-9939-1979-0545589-6

MathSciNet review:
545589

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An algorithm is given for determining whether or not a finite system of conditions of the types , *a* is a square, possess a simultaneous solution in positive integers. Various generalizations are also obtained.

**[1]**Martin Davis, Yuri Matijasevič, and Julia Robinson,*Hilbert’s tenth problem: Diophantine equations: positive aspects of a negative solution*, Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Vol. XXVIII, Northern Illinois Univ., De Kalb, Ill., 1974) Amer. Math. Soc., Providence, R. I., 1976, pp. 323–378. (loose erratum). MR**0432534****[2]**-,*Unsolvable problems*, Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977, pp. 567-594.**[3]**N. K. Kosovskiĭ,*The solution of systems that consist simultaneously of word equations and word length inequalities*, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)**40**(1974), 24–29, 156 (Russian, with English summary). Investigations in constructive mathematics and mathematical logic, VI (dedicated to A. A. Markov on the occasion of his 70th birthday). MR**0373863****[4]**Julia Robinson,*Definability and decision problems in arithmetic*, J. Symbolic Logic**14**(1949), 98–114. MR**0031446**, https://doi.org/10.2307/2266510**[5]**Edward Schwartz,*Existential definability in terms of some quadratic functions*, Doctoral Dissertation, Yeshiva University, 1974.**[6]**Th. Skolem,*Diophantische Gleichungen*, Ergebnisse der Math. und ihrer Grenzgebiete, Band 5, Springer, Berlin, 1938.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
10N05,
03B25,
10B99

Retrieve articles in all journals with MSC: 10N05, 03B25, 10B99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1979-0545589-6

Keywords:
Diophantine problems,
decidability

Article copyright:
© Copyright 1979
American Mathematical Society