Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Generic properties of contraction semigroups and fixed points on nonexpansive operators


Authors: F. S. De Blasi and J. Myjak
Journal: Proc. Amer. Math. Soc. 77 (1979), 341-347
MSC: Primary 47H15; Secondary 47H10
DOI: https://doi.org/10.1090/S0002-9939-1979-0545593-8
MathSciNet review: 545593
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \Omega $ be a nonempty, closed, bounded and starshaped subset of a Banach space X. It is shown that most (in the Baire category sense) differential equations $ u' + Au = 0$ do have a unique asymptotic equilibrium point. Here $ A:\Omega \to X$ is supposed to be a nonlinear, continuous, bounded and accretive operator satisfying the Nagumo boundary condition. An application to the fixed point theory of nonexpansive operators $ F:\Omega \to X$ satisfying $ F(\partial \Omega ) \subset \Omega $ is given.


References [Enhancements On Off] (What's this?)

  • [1] F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A. 34 (1965), 1041-1044. MR 0187120 (32:4574)
  • [2] F. S. De Blasi and J. Myjak, Sur la convergence des approximations successives pour les contractions non linéaires dans un espace de Banach, C. R. Acad. Sci. Paris Sér. A-B 4 (1976), 185-188. MR 0425703 (54:13656)
  • [3] -, Generic properties of differential equations in Banach space, Bull. Acad. Polon. Sci. Sér. Math. Astronom. Phys. 26 (1978), 287-292.
  • [4] K. Deimling, Zeros of accretive operators, Manuscripta Math. 13 (1974), 365-374. MR 0350538 (50:3030)
  • [5] J. Gatica and W. A. Kirk, Fixed point theorems for Lipschitzian pseudocontractive mappings, Proc. Amer. Math. Soc. 36 (1972), 111-115. MR 0306993 (46:6114)
  • [6] D. Gödhe, Zum Prinzip der kontraktiven Abbildung, Math. Nachr. 30 (1966), 251-258. MR 0190718 (32:8129)
  • [7] T. Kato, Nonlinear semigroups in Banach space, J. Math. Soc. Japan 19 (1967), 493-507. MR 0226230 (37:1820)
  • [8] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004-1006. MR 0189009 (32:6436)
  • [9] -, Fixed point theorems for nonlinear nonexpansive and generalized contraction mappings, Pacific J. Math. 38 (1971), 89-94. MR 0305160 (46:4290)
  • [10] V. Lakshmikantham and S. Leela, On the existence of zeros of Lyapunov-monotone operators, University of Texas, Arlington, Technical Report No. 19, 1975.
  • [11] R. H. Martin, Jr., Differential equations on closed subsets of a Banach space, Trans. Amer. Math. Soc. 179 (1973), 399-414. MR 0318991 (47:7537)
  • [12] -, Nonlinear operators and differential equations in Banach spaces, Wiley-Interscience, New York, 1976. MR 0492671 (58:11753)
  • [13] N. Nagumo, Über die Lage der Intergralkurven gewöhnlicher differential Gleichungen, Proc. Phys. Math. Soc. Japan 24 (1942), 551-559. MR 0015180 (7:381e)
  • [14] S. Reich, On fixed point theorems obtained from existence theorems for differential equations, J. Math. Anal. Appl. 54 (1976), 26-36. MR 0402554 (53:6373)
  • [15] G. Vidossich, Existence, uniqueness and approximation of fixed points as a generic property, Bol. Soc. Brasil. Mat. 5 (1974), 17-29. MR 0397710 (53:1568)
  • [16] -, How to get zeros of nonlinear operators using the theory of ordinary differential equations, Atas Semana Analise Funcional, São Paulo, 1973.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47H15, 47H10

Retrieve articles in all journals with MSC: 47H15, 47H10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0545593-8
Keywords: Differential equation, asymptotic equilibrium, contraction semigroup, nonexpansive mapping, fixed point, Baire category, residual set, generic property, accretive operator, Nagumo boundary condition
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society