Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A Cohen type inequality for compact Lie groups


Authors: Saverio Giulini, Paolo M. Soardi and Giancarlo Travaglini
Journal: Proc. Amer. Math. Soc. 77 (1979), 359-364
MSC: Primary 43A55; Secondary 22E30, 43A50
DOI: https://doi.org/10.1090/S0002-9939-1979-0545596-3
MathSciNet review: 545596
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The following theorem is proved: let G denote a compact connected semisimple Lie group. There exists $ \theta = \theta (G)(3 \leqslant \theta < 4)$ such that, if $ {\chi _1}, \ldots ,{\chi _N}$ are N distinct characters of G, $ {d_1}, \ldots ,{d_N}$ their dimensions, $ {c_1}, \ldots ,{c_N}$ complex numbers of modulus greater than or equal to one, then, for all $ p > \theta ,\vert\vert\vert\Sigma _{j = 1}^N{c_j}{d_j}{\chi _j}\vert\vert{\vert _p} \geqslant$   const$ _p N^{\alpha_p}$ where $ \vert\vert\vert \cdot \vert\vert{\vert _p}$ denotes the $ {L^p}(G)$ convolutor norm and const$ _p$ and $ {\alpha _p} = {\alpha _p}(G)$ are positive constants. Results on divergence of Fourier series on compact Lie groups are deduced.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams, Lectures on Lie groups, Benjamin, New York, 1969. MR 0252560 (40:5780)
  • [2] R. S. Cahn, Lattice points and Lie groups. I, Trans. Amer. Math. Soc. 183 (1973), 119-129. MR 0335687 (49:467)
  • [3] C. Cecchini, Lacunary Fourier series on compact Lie groups, J. Functional Analysis 11 (1972), 191-203. MR 0374821 (51:11017)
  • [4] J. L. Clerc, Sommes de Riesz and multiplicateurs sur un groupe de Lie compact, Ann. Inst. Fourier 24 (1974), 149-172. MR 0361620 (50:14065)
  • [5] P. J. Cohen, On a conjecture of Littlewood and idempotent measures, Amer. J. Math. 82 (1960), 191-212. MR 0133397 (24:A3231)
  • [6] A. H. Dooley, Norms of characters and lacunarity for compact Lie groups, J. Functional Analysis (to appear). MR 534677 (80i:43011)
  • [7] E. Hewitt and H. S. Zuckerman, On a theorem of P. J. Cohen and H. Davenport, Proc. Amer. Math. Soc. 14 (1963), 847-855. MR 0154947 (27:4890)
  • [8] S. K. Pichorides, A lower bound for the $ {L^1}$ norm of exponential sums, Matematika 21 (1974), 155-159. MR 0371831 (51:8048)
  • [9] -, On a conjecture of Littlewood concerning exponential sums, Notices Amer. Math. Soc. 24 (1977), A-427.
  • [10] J. F. Price, On the integral divergence of Dirichlet kernels for the second unitary and special unitary groups, J. London Math. Soc. (2) 9 (1975), 593-598. MR 0390661 (52:11484)
  • [11] -, On local central lacunary sets for compact Lie groups, Monatsh. Math. 80 (1975), no. 3, 201-204. MR 0390659 (52:11482)
  • [12] R. J. Stanton, On mean convergence of Fourier series on compact Lie groups, Trans. Amer. Math. Soc. 218 (1976), 61-87. MR 0420158 (54:8173)
  • [13] R. J. Stanton and P. A. Tomas, Polyhedral summability of Fourier series on compact Lie groups, Amer. J. Math. 100 (1978), 477-493. MR 0622197 (58:29855)
  • [14] E. M. Stein, On limits of sequences of operators, Ann. of Math. 74 (1961), 140-170. MR 0125392 (23:A2695)
  • [15] V. S. Varadarajan, Lie groups, Lie algebras and their representations, Prentice-Hall, Englewood Cliffs, N.J., 1974. MR 0376938 (51:13113)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A55, 22E30, 43A50

Retrieve articles in all journals with MSC: 43A55, 22E30, 43A50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0545596-3
Keywords: Compact Lie groups, Dirichlet kernels, convolutors
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society