A Cohen type inequality for compact Lie groups
Authors:
Saverio Giulini, Paolo M. Soardi and Giancarlo Travaglini
Journal:
Proc. Amer. Math. Soc. 77 (1979), 359-364
MSC:
Primary 43A55; Secondary 22E30, 43A50
DOI:
https://doi.org/10.1090/S0002-9939-1979-0545596-3
MathSciNet review:
545596
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: The following theorem is proved: let G denote a compact connected semisimple Lie group. There exists such that, if
are N distinct characters of G,
their dimensions,
complex numbers of modulus greater than or equal to one, then, for all
const
where
denotes the
convolutor norm and const
and
are positive constants. Results on divergence of Fourier series on compact Lie groups are deduced.
- [1] J. F. Adams, Lectures on Lie groups, Benjamin, New York, 1969. MR 0252560 (40:5780)
- [2] R. S. Cahn, Lattice points and Lie groups. I, Trans. Amer. Math. Soc. 183 (1973), 119-129. MR 0335687 (49:467)
- [3] C. Cecchini, Lacunary Fourier series on compact Lie groups, J. Functional Analysis 11 (1972), 191-203. MR 0374821 (51:11017)
- [4] J. L. Clerc, Sommes de Riesz and multiplicateurs sur un groupe de Lie compact, Ann. Inst. Fourier 24 (1974), 149-172. MR 0361620 (50:14065)
- [5] P. J. Cohen, On a conjecture of Littlewood and idempotent measures, Amer. J. Math. 82 (1960), 191-212. MR 0133397 (24:A3231)
- [6] A. H. Dooley, Norms of characters and lacunarity for compact Lie groups, J. Functional Analysis (to appear). MR 534677 (80i:43011)
- [7] E. Hewitt and H. S. Zuckerman, On a theorem of P. J. Cohen and H. Davenport, Proc. Amer. Math. Soc. 14 (1963), 847-855. MR 0154947 (27:4890)
- [8]
S. K. Pichorides, A lower bound for the
norm of exponential sums, Matematika 21 (1974), 155-159. MR 0371831 (51:8048)
- [9] -, On a conjecture of Littlewood concerning exponential sums, Notices Amer. Math. Soc. 24 (1977), A-427.
- [10] J. F. Price, On the integral divergence of Dirichlet kernels for the second unitary and special unitary groups, J. London Math. Soc. (2) 9 (1975), 593-598. MR 0390661 (52:11484)
- [11] -, On local central lacunary sets for compact Lie groups, Monatsh. Math. 80 (1975), no. 3, 201-204. MR 0390659 (52:11482)
- [12] R. J. Stanton, On mean convergence of Fourier series on compact Lie groups, Trans. Amer. Math. Soc. 218 (1976), 61-87. MR 0420158 (54:8173)
- [13] R. J. Stanton and P. A. Tomas, Polyhedral summability of Fourier series on compact Lie groups, Amer. J. Math. 100 (1978), 477-493. MR 0622197 (58:29855)
- [14] E. M. Stein, On limits of sequences of operators, Ann. of Math. 74 (1961), 140-170. MR 0125392 (23:A2695)
- [15] V. S. Varadarajan, Lie groups, Lie algebras and their representations, Prentice-Hall, Englewood Cliffs, N.J., 1974. MR 0376938 (51:13113)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A55, 22E30, 43A50
Retrieve articles in all journals with MSC: 43A55, 22E30, 43A50
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1979-0545596-3
Keywords:
Compact Lie groups,
Dirichlet kernels,
convolutors
Article copyright:
© Copyright 1979
American Mathematical Society