Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A Cohen type inequality for compact Lie groups


Authors: Saverio Giulini, Paolo M. Soardi and Giancarlo Travaglini
Journal: Proc. Amer. Math. Soc. 77 (1979), 359-364
MSC: Primary 43A55; Secondary 22E30, 43A50
DOI: https://doi.org/10.1090/S0002-9939-1979-0545596-3
MathSciNet review: 545596
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The following theorem is proved: let G denote a compact connected semisimple Lie group. There exists $ \theta = \theta (G)(3 \leqslant \theta < 4)$ such that, if $ {\chi _1}, \ldots ,{\chi _N}$ are N distinct characters of G, $ {d_1}, \ldots ,{d_N}$ their dimensions, $ {c_1}, \ldots ,{c_N}$ complex numbers of modulus greater than or equal to one, then, for all $ p > \theta ,\vert\vert\vert\Sigma _{j = 1}^N{c_j}{d_j}{\chi _j}\vert\vert{\vert _p} \geqslant$   const$ _p N^{\alpha_p}$ where $ \vert\vert\vert \cdot \vert\vert{\vert _p}$ denotes the $ {L^p}(G)$ convolutor norm and const$ _p$ and $ {\alpha _p} = {\alpha _p}(G)$ are positive constants. Results on divergence of Fourier series on compact Lie groups are deduced.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A55, 22E30, 43A50

Retrieve articles in all journals with MSC: 43A55, 22E30, 43A50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0545596-3
Keywords: Compact Lie groups, Dirichlet kernels, convolutors
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society