L² HARMONIC FORMS ON ROTATIONALLY SYMMETRIC RIEMANNIAN MANIFOLDS

JOZEF DODZIUK

ABSTRACT. The paper contains a vanishing theorem for L² harmonic forms on complete rotationally symmetric Riemannian manifolds. This theorem requires no assumptions on curvature.

This paper gives necessary and sufficient conditions for existence of L² harmonic forms on a special class of Riemannian manifolds. Manifolds of this class were called models by Greene and Wu and played a crucial part in the study of function theory on open manifolds [GW]. Throughout the paper M will denote a model of dimension n, i.e. a C∞ Riemannian manifold such that:

(1) there exists a point o ∈ M for which the exponential mapping is a diffeomorphism of T_oM onto M;

(2) every linear isometry φ: T_oM → T_oM is realized as the differential of an isometry Φ: M → M, i.e., Φ(o) = o and Φ∗(o) = φ.

Clearly, M is complete and can be identified with T_oM via exp_o. In terms of geodesic polar coordinates (r, θ) ∈ (0, ∞) × S^n−1 ≅ M\{o} the Riemannian metric ds² of M can be written as

\[ds^2 = dr^2 + f(r)^2 d\theta^2, \]

where dθ² denotes the standard metric on S^n−1 and the function f(r) is C∞ on [0, ∞) and satisfies

\[f(0) = 0, \quad f'(0) = 1, \quad f(r) > 0 \quad \text{for } r > 0 \]

(cf. [S, pp. 179–183]).

Complete description of the spaces \(\mathcal{H}(M) \) of L² harmonic forms is contained in the following

THEOREM. Let M be a model of dimension n > 2. Then

(i) \(\mathcal{H}^q(M) = \{0\} \) for \(q \neq 0, n/2, n \),

(ii) \(\mathcal{H}^q(M) \cong \mathcal{H}^p(M) \cong \begin{cases} \{0\} & \text{if } \int_0^\infty f(r)^{n-1} dr = \infty, \\ \mathbb{R} & \text{if } \int_0^\infty f(r)^{n-1} dr < \infty, \end{cases} \)

Received by the editors July 27, 1978 and, in revised form, December 4, 1978.

Key words and phrases. L² harmonic forms, vanishing theorems.

1 Partially supported by NSF Grant MCS 78-02285-A01.

© 1979 American Mathematical Society
0002-9939/79/0000-0569/$02.50

395
(iii) \(H^k(M) = \{0\} \) if \(n = 2k \) and \(\int_1^\infty \frac{ds}{f(s)} = \infty \),

\(H^k(M) \) is a Hilbert space of infinite dimension if \(n = 2k \) and

\[
\int_1^\infty \frac{ds}{f(s)} < \infty.
\]

Remark. The integral in (ii) is a multiple of the volume of \(M \). Finiteness of the integral \(\int_1^\infty ds/f(s) \) implies that \(M \) is conformally equivalent to an open ball in \(\mathbb{R}^n \). If \(\int_1^\infty ds/f(s) = \infty \) then \(M \) is conformal to \(\mathbb{R}^n \).

My interest in \(L^2 \) harmonic forms is motivated in part by the well known conjecture (cf. [C, p. 44]).

Conjecture 1. Let \(N \) be a compact Riemannian manifold of dimension \(2k \). If the sectional curvature of \(N \) is nonpositive the Euler characteristic \(\chi(N) \) satisfies

\[
(-1)^k \chi(N) > 0.
\]

I. M. Singer suggested that in view of the \(L^2 \) index theorem [A] an appropriate vanishing theorem for \(L^2 \) harmonic forms on the universal covering of \(N \) would imply the conjecture. To see what sort of vanishing theorem to expect, I carried out an explicit computation in the case of constant negative curvature. It turned out that the same computation yielded a more general result which is the subject of this paper. The result itself is rather surprising since the curvature of \(M \) has no effect on existence of \(L^2 \) harmonic forms of degree \(q \neq 0, n/2, n \). The vanishing in this range is a consequence of duality between forms of degree \(q \) and \(n - q \). The general question of existence of nontrivial \(L^2 \) harmonic forms on open manifolds is a very difficult one. Nevertheless, I propose hesitantly the following:

Conjecture 2. Let \(M \) be a simply connected complete Riemannian manifold of dimension \(n \) and of nonpositive sectional curvature. Then there are no nonzero \(L^2 \) harmonic forms on \(M \) of degree \(q \neq n/2 \).

Conjecture 2 combined with the \(L^2 \) index theorem implies Conjecture 1. Indeed, the \(L^2 \) index theorem, applied to the operator \(d + \delta \) whose index is equal to the Euler characteristic, states that \(L^2 \) harmonic forms on the universal covering \(\tilde{N} \) of \(N \) can be used to reckon the Euler characteristic of \(N \). More precisely \(\chi(N) \) is equal to the alternating sum

\[
\sum_{p=1}^{2k} (-1)^p \dim_{\pi_1(N)} H^p(\tilde{N}),
\]

where \(\dim_{\pi_1(N)} H^p(\tilde{N}) \) is the normalized dimension of \(H^p(\tilde{N}) \) with respect to the natural action of \(\pi_1(N) \) on \(H^p(\tilde{N}) \) (cf. [A]). Thus, if \(H^p(\tilde{N}) = \{0\} \) for \(p \neq k \),

\[
(-1)^k \chi(N) = \dim_{\pi_1(N)} H^k(\tilde{N}) > 0.
\]

The following example due to E. Calabi shows that one cannot expect to have \(H^p(M) = \{0\} \) for \(q \neq 0, n/2, n \) for every manifold \(M \) satisfying (1). Let \((M_i, dr_i^2 + f_i(r_i)^2 \ d\theta_i^2) \) be a model of dimension \(n_i, i = 1, 2 \). Suppose that \(n_2 \) is
even,
\[\int_0^\infty f(t)^{n_1-1} \, dt < \infty, \quad \int_1^\infty \frac{ds}{f_2(s)} < \infty. \]

Then, according to the theorem \(\mathcal{H}'(M) \neq \{0\} \) for \(q = 0, n_1, \mathcal{H}'(M_2) \neq \{0\} \) when \(q = n_2/2 \). The Fubini theorem and the identity
\[\Delta_{M_1 \times M_2} = \Delta_{M_1} \otimes I + I \otimes \Delta_{M_2}, \]
\(q = n_2/2, n_2/2 + n_1 \).

The above construction cannot be used to produce a counterexample to Conjecture 2. In order that \(M_1 \times M_2 \), when equipped with the product metric, have nonpositive sectional curvature, \(M_1 \) and \(M_2 \) must have the same property. This would force the integral \(\int_0^\infty f(t)^{n_1-1} \, dt \) to diverge since the volume of complete, simply connected Riemannian manifold of nonpositive sectional curvature is infinite.

I am grateful to E. Calabi and J. Kazdan for many stimulating conversations about \(L^2 \) harmonic forms and related matters.

Proof of theorem. According to a theorem of Andreotti and Vesentini (cf. [dR, Theorem 26]) an \(L^2 \) form \(\omega \) on \(M \) is harmonic if and only if it is closed and coclosed. Thus a \(C^\infty \) \(q \)-form \(u \) is in \(\mathcal{H}'(M) \) if and only if
\[\int_M u \wedge \ast \omega < \infty, \quad du = 0, \quad d\ast u = 0, \]
where \(\ast \) denotes the duality operator between forms of degree \(q \) and \(n - q \). Since \(\ast \omega \wedge \ast (\ast \omega) = \omega \wedge \ast \omega \) for every form \(\omega \), \(\ast \) establishes an isomorphism between \(\mathcal{H}'(M) \) and \(\mathcal{H}^{n-q}(M) \). Let \(dV \) denote the volume element of the Riemannian metric of \(M \), and let \(\langle \cdot , \cdot \rangle \) and \(| \cdot | \) be the pointwise inner product and norm, respectively, of differential forms on \(M \). The global (integrated) inner product and norm are given by
\[(\omega, \eta) = \int_M \omega \wedge \ast \eta = \int_M \langle \omega, \eta \rangle \, dV, \]
\[|\omega|^2 = \int_M \omega \wedge \ast \omega = \int_M |\omega|^2 \, dV, \]
where \(\omega \) and \(\eta \) are two forms of equal degrees. Corresponding objects on \(S^{n-1} \) equipped with the standard metric will have to be considered. They will be denoted by the same symbols as their counterparts on \(M \) with a subscript 0. For example, the volume elements \(dV \) and \(dV_0 \) of \(M \) and \(S^{n-1} \), respectively, are related by \(dV = f(r)^{n-1} \, dV_0 \wedge dr \).

The case (ii) of the theorem is now trivial. If \(\omega \) is an \(L^2 \) harmonic function \(dw = 0 \) by (5), i.e., \(\omega \) is constant. Constants are in \(L^2 \) if and only if the total volume of \(M \) is finite, which gives (ii). To study the remaining cases one writes the conditions (5) in terms of geodesic polar coordinates \((r, \theta) \). If \(\omega \) is a \(C^\infty \) \(q \)-form on \(M \setminus \{ o \} \) of degree \(q \neq 0, n \), then
\[\omega = a(r, \theta) \wedge dr + b(r, \theta), \]
where \(a(r, \theta), b(r, \theta)\) are smooth forms on \(S^{n-1}\), depending on a parameter \(r > 0\), of degree \(q - 1\) and \(q\), respectively. Formally \(a = (-1)^{q-1} i(\partial/\partial r)\omega\), \(b = \omega - a \wedge dr\), where \(i(\partial/\partial r)\) is the interior product with the radial vector field \(\partial/\partial r\). Of course, \(a\) and \(b\) can be also regarded as forms on \(M \setminus \{o\}\).

In terms of decomposition (6) \(\ast \omega\) can be computed as follows:

\[
\ast \omega = (-1)^{n-p} f^{n-2q+1} \ast_0 a + f^{n-2q-1} b \ast_0 dr.
\]

(7)

To prove this formula one uses the fact that \(\ast\) consists essentially of taking orthogonal complement together with the identity

\[
\ast g = \ast_{**}
\]

relating duality operators on \(q\)-forms for two conformal metrics \(g\) and \(\lambda^2 g\).

Using (5), (6) and (7) one concludes that for \(\omega \in \mathcal{K}^q(M)\) the following conditions hold:

\[
\int_0^\infty \int_{S^{n-1}} (f^{n-2q+1} |a|_{\delta_0}^2 + f^{n-2q-1} |b|_{\delta_0}^2) dV_0 dr < \infty,
\]

(9)

\[
d_0 b = 0, \quad d_0 \ast_0 a = 0,
\]

\[
d_0 a + (-1)^q \frac{\partial b}{\partial r} = 0,
\]

Moreover the pointwise norm \(|\omega|^2\) is bounded near \(r = 0\), i.e.,

\[
|\omega|^2 = f^{-2(q-1)}|a|_{\delta_0}^2 + f^{-2q}|b|_{\delta_0}^2 < C \quad \text{for} \quad r \in (0, 1].
\]

Apply \(\ast_0\) to the last equation in (9) and use commutativity

\[
\frac{\partial}{\partial r} \ast_0 = \ast_0 \frac{\partial}{\partial r}
\]

to obtain the following set of conditions satisfied by \(\omega = a \wedge dr + b \in \mathcal{K}^q(M)\) on \(M \setminus \{o\}\)

\[
(a) \quad d_0 b = 0,
\]

\[
(b) \quad d_0 \ast_0 a = 0,
\]

\[
(c) \quad d_0 a + (-1)^q \frac{\partial b}{\partial r} = 0,
\]

\[
(d) \quad \frac{\partial}{\partial r} (f^{n-2q+1} a) + (-1)^q f^{n-2q-1} \delta_0 b = 0,
\]

\[
(e) \quad f^{-2(q-1)}|a|^2 + f^{-2q}|b|^2 < C \quad \text{for} \quad r \in (0, 1],
\]

\[
(f) \quad \int_0^\infty \int_{S^{n-1}} (f^{n-2q+1} |a|_{\delta_0}^2 + f^{n-2q-1} |b|_{\delta_0}^2) dV_0 dr < \infty,
\]

where \(\delta_0\) is the formal adjoint of \(d_0\) on \(S^{n-1}\). Observe now that if \(\omega \in \mathcal{K}^q(M)\) and \(b \equiv 0\), then \(a \equiv 0\). Indeed, if \(b \equiv 0\), then, by (10b) and (10c), \(a(r, \theta)\) is a harmonic form on \(S^{n-1}\) for every fixed \(r > 0\). Since \(0 < \deg a < n - 2\),

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
$a(r, \theta)$ can be nonzero only if $q - 1 = \deg a = 0$, in which case $a(r, \theta)$ is independent of θ. On the other hand, by (10d),

$$\frac{\partial}{\partial r}(f^{n-1}a) = 0,$$

i.e., $a = C_1 f^{-(n-1)}$ which blows up at $r = 0$ contradicting (10e) unless $C_1 = 0$.

Now eliminate $a(r, \theta)$ from the system consisting of equations (10c) and (10d). Thus apply d_0 to (10d) and use commutativity $d_0 \partial / \partial r = (\partial / \partial r) d_0$ to obtain

$$f^{n-2q-1}d_0b = \frac{\partial}{\partial r}(f^{n-2q+1} \frac{\partial b}{\partial r}).$$

Take the inner product (over S^{n-1}) of both sides of this equation with b keeping $r > 0$ fixed to see that

$$\left(\frac{\partial}{\partial r}(f^{n-2q+1} \frac{\partial b}{\partial r}), b \right)_0 = f^{n-2q-1}(d_0b, d_0b)_0 > 0.$$

Therefore

$$\frac{d}{dr}(f^{n-2q+1} \frac{\partial b}{\partial r}, b)_0 = \left(\frac{\partial}{\partial r}(f^{n-2q+1} \frac{\partial b}{\partial r}), b \right)_0 + f^{n-2q+1}(\frac{\partial b}{\partial r}, \frac{\partial b}{\partial r})_0 > 0.$$

By (10e) and (4) $|b|_2^2 = O(r^2)$ for small r. Hence

$$\left(f^{n-2q+1} \frac{\partial b}{\partial r}, b \right)_0 = O(r^n).$$

It follows that

$$\frac{d}{dr}(b, b)_0 = 2\left(\frac{\partial b}{\partial r}, b \right)_0 > 0$$

for all $r > 0$, i.e. $\|b\|_0^2$ is a nondecreasing function of r. Now suppose $b \neq 0$. Since $\|b\|_0^2$ is monotone and

$$\infty > \|\omega\|^2 > \|b\|^2 = \int_0^\infty f^{n-2q-1} \|b\|_0^2 dr,$$

the integral $\int_1^\infty f^{n-2q-1} dr$ is finite. Thus for $q \neq 0, n$, $\mathcal{H}(M) \neq \{0\}$ implies that $\int_1^\infty f^{n-2q-1} dr$ is finite. By duality $\mathcal{H}(M) \cong \mathcal{H}^{-n}(M)$, i.e. if $\mathcal{H}(M) \neq \{0\}$, then the two integrals $\int f^{n-2q-1} dr$, $\int f^{n+2q-1} dr$ are simultaneously finite. If $n = 2q$ the two integrands are the same. If, on the other hand, $n - 2q \neq 0$ then $(n - 2q - 1)(-n + 2q - 1) = 1 - (n - 2q)^2$. Thus either one of the exponents is equal to zero, or the two exponents have opposite signs. In both cases one of the integrals has to diverge, which proves that $\mathcal{H}(M) = \{0\}$ if $q \neq 0, n/2, n$. This still leaves the possibility that, for $n = 2k$, $\mathcal{H}(M) \neq \{0\}$ provided $f_1^\infty f^{-1} dr < \infty$. Such is the case and, in fact, $\mathcal{H}(M)$ has infinite dimension. The last assertion will follow from the following:
Lemma. Let M be a model with the metric $ds^2 = dr^2 + f(r)^2 \, d\theta^2$. Define

$$R(r) = e^{\int \frac{dr}{f(r)}}.$$

Then the mapping $F: M \setminus \{o\} \to \mathbb{R}^n \setminus \{o\}$ given (in terms of polar geodesic coordinates (r, θ) on M and polar coordinates on \mathbb{R}^n) by $F(r, \theta) = (R, \theta)$ extends to a C^1 conformal diffeomorphism of M onto an open ball of (possible infinite) radius equal to $\int \frac{ds}{f(s)}$ centered at the origin. Moreover, F is C^∞ on $M \setminus \{o\}$.

Remark. The lemma is due to Milnor [M] for $n = 2$, in which case F is C^∞ everywhere. The proof for $n > 2$ is essentially the same and will not be repeated here. If $n > 2$, the restriction of F to every plane through o is C^∞. It is likely that F is C^∞, but the regularity asserted in the lemma is sufficient for the purpose at hand.

To finish the proof of the theorem assume the lemma and suppose $\dim M = 2k$. By (8) the \bullet operator acting on forms of degree k depends only on the conformal structure. Thus all conditions in (5) are conformally invariant. Assume that $\int \frac{ds}{f(s)} < \infty$ and let B be the open ball in \mathbb{R}^n of radius $\int \frac{ds}{f(s)}$. The space of all C^∞ k-forms η on \mathbb{R}^n which satisfy the equations $d\eta = 0$, $d^\bullet \eta = 0$ (\bullet induced by the standard flat metric) has infinite dimension (e.g., if $h(y_1, y_2, \ldots, y_{k+1})$ is a nonconstant harmonic function on \mathbb{R}^{k+1}, then

$$\eta = d(h(x_1, x_{k+1}, \ldots, x_n) \, dx_1 \ldots dx_{k-1})$$

satisfies the two equations). Restrictions of such forms to B are clearly in L^2. Thus the space \mathcal{K} of k-forms on B satisfying conditions (5) with respect to the flat metric has infinite dimension. By the lemma and the conformal invariance, the space $F^* \mathcal{K}$ consists of forms ω of degree k which are continuous, square integrable on M, C^∞ on $M \setminus \{o\}$ and satisfy $d\omega = d^\bullet \omega = 0$ on $M \setminus \{o\}$. Standard regularity theorem shows that every $\omega \in F^* \mathcal{K}$ is in fact C^∞ and harmonic at every point of M. It follows that F^* establishes an isomorphism between \mathcal{K} and $\mathcal{K}^k(M)$ and that $\mathcal{K}^k(M)$ has infinite dimension.

References

Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania 19174