THE GENERATION OF NONLINEAR EQUIVARIANT DIFFERENTIAL OPERATORS

ROBERT DELVER

ABSTRACT. Finite generation results are given for the set of smooth nonlinear differential operators: \(C^\infty(M, N) \to C^\infty(M, R) \) of order \(< k \) which are equivariant with respect to the action of a Lie group on the base manifold \(M \).

1. Introduction. Let \(G \) be a Lie group acting by diffeomorphisms \(\phi_g, g \in G \), on a smooth manifold \(M \), \(N \) a smooth manifold and let \(\mathcal{D}_k, k \in \{ \infty, 1, 2, 3, \ldots \} \), denote the real vector space of smooth nonlinear differential operators of order \(< k \) of \(C^\infty(M, N) \) into \(C^\infty(M, R) \). The action of \(G \) on \(M \) lifts to \(C^\infty(M, N) \) by \(g \cdot f = f \circ \phi_g^{-1}, f \in C^\infty(M, N), g \in G \). Let \(\mathcal{D}_k^G \) denote the \(G \)-equivariant elements of \(\mathcal{D}_k \). Full definitions are given in \(\S 2 \).

There are two equivariance preserving structures on \(\mathcal{D}_\infty \) each with its own generation problem. The first structure is a multiplication: \(\mathcal{D}_k \times \mathcal{D}_k \to \mathcal{D}_k \), defined by

\[
\mathcal{F}_1 \cdot \mathcal{F}_2(f) = \mathcal{F}_1(f)\mathcal{F}_2(f), \quad f \in C^\infty(M, N). \tag{1.1}
\]

If \(N = R \), a second structure is induced by the composition \(\mathcal{D}_{k_1} \times \mathcal{D}_{k_2} \to \mathcal{D}_{k_1 + k_2} \) given by

\[
\mathcal{F}_1 \mathcal{F}_2(f) = \mathcal{F}_1(\mathcal{F}_2(f)), \quad f \in C^\infty(M, R). \tag{1.2}
\]

The main results of this paper are two finiteness theorems, one for each of these structures.

THEOREM 1. Let \(G \) be a compact Lie group, \(M \) a smooth \(G \)-manifold of finite orbit type and \(N \) a smooth manifold then, for each \(k \in \{ 0, 1, 2, \ldots \} \), there exist \(\mathcal{Q}_1, \ldots, \mathcal{Q}_i \in \mathcal{D}_k^G \) such that \(\mathcal{F} \in \mathcal{D}_k^G \) iff \(\mathcal{F} = f(\mathcal{Q}_1, \ldots, \mathcal{Q}_i) \), for some \(f \in C^\infty(R^i) \).

This theorem is based on a theorem of Schwarz [10], the proof is given in \(\S 2 \).

Let \(C^\infty(M)^G \) denote the \(G \)-invariant elements of \(C^\infty(M) \). A function \(\xi: M \to R^l \) is called a finite generator for \(C^\infty(M)^G \) iff \(C^\infty(M)^G = \xi^* C^\infty(M) \).

Received by the editors December 5, 1977 and, in revised form, February 15, 1978 and October 4, 1978.

Key words and phrases. Equivariant differential operators, transformation groups, differential invariants.

1 The preparation of this paper was supported by the National Research Council under Grant A8731.

© 1979 American Mathematical Society

0002-9939/79/0000-0570/$03.00

401

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
We let $\Gamma^G(T(M))$ denote the $C^\infty(M)^G$-module of invariant vector fields on M. In the case where M is a principal G-bundle finite generators exist both for $C^\infty(M)^G$ and for the module $\Gamma^G(T(M))$ (Lemmas (3.1) and (3.2)). Moreover, \{X_1, \ldots, X_n\} $\subset \Gamma^G(T(M))$ is a generator for $\Gamma^G(T(M))$ iff \{$X_1(x), \ldots, X_n(x)$\} generates the vector space $T_x(M)$ for all $x \in M$ (Lemma (3.3)). Let $N = \mathbb{R}$.

Theorem 2. Let M be a principal G-bundle with fibration \{M, π, B\}, $\xi : M \rightarrow \mathbb{R}^l$ a generator for $C^\infty(M)^G$ and \{X^1, \ldots, X^n\} a generator for $\Gamma^G(T(M))$. Then

$$\mathfrak{G}_k(M)^G = \{\xi, (X^\alpha)_{|\alpha| < k}\}^* C^\infty(\mathbb{R}^l \times \mathbb{R}^n),$$

for $k > 1$.

$(X^\alpha)_{|\alpha| < k}$ denotes the sequence of all X^α with $|\alpha| < k$ in lexicographical order and \{$\xi, (X^\alpha)_{|\alpha| < k}\}^* C^\infty(\mathbb{R}^l \times \mathbb{R}^n)$ is the set of operators of the form $a(\xi, (X^\alpha)_{|\alpha| < k}), a \in C^\infty(\mathbb{R}^l \times \mathbb{R}^n)$.

In a somewhat different context, problems of this type were studied by Lie [8], by Tresse [11] and more recently by Kumpera [7].

Thanks are due to Ivan Kupka for some helpful discussion.

2. The verification of Theorem 1. Let $J^k(M, N)$ be the kth jet bundle from M into N with source map α and target map β. If P and Q are smooth manifolds, $\mu : P \rightarrow M$ a diffeomorphism, $\nu : N \rightarrow Q$ a smooth map, then $(J^k\mu)^* : J^k(M, N) \rightarrow J^k(P, N)$ and $(J^k\nu)_* : J^k(M, N) \rightarrow J^k(M, Q)$ are defined by

$$(J^k\mu)^*(\sigma) = j^k_{\mu^{-1}(\alpha(\sigma))} f \circ \mu \quad \text{and} \quad (J^k\nu)_*(\sigma) = j^k_{\nu(\alpha(\sigma))} \circ f,$$

where f represents σ.

The action of G on M lifts to a smooth action on $J^k(M, N)$ by

$$(g \cdot \sigma) = (j^k_{g^{-1}} \circ \sigma). \quad (2.1)$$

Let π_k be the canonical projection of $J^{k+1}(M, N)$ onto $J^k(M, N)$ and put

$$D_k = C^\infty(J^k(M, N), \mathbb{R}).$$

D_∞ is the inductive limit as $k \rightarrow \infty$ of (D_k, π_k^*),

where π_k^* is the map from D_k to D_{k+1} given by $\pi_k^* F = F \circ \pi_k$.

The set of smooth nonlinear differential operators from $C^\infty(M, N)$ into $C^\infty(M, \mathbb{R})$ of order $< k$, $k \in \{\infty, 1, 2, 3, \ldots\}$ is denoted by $\mathfrak{D}_k \subseteq \mathfrak{D}_k^G$. In this case F is called the symbol of \mathfrak{F} or $F = \text{sym } \mathfrak{F}$. The G-equivariant elements of \mathfrak{D}_k are denoted by \mathfrak{D}_k^G, the G-invariant elements of D_k by D_k^G.

Proposition. $\mathfrak{F} \in \mathfrak{D}_k^G$ iff $\text{sym } \mathfrak{F} \in D_k^G$.

Proof. Let F be the symbol of \mathfrak{F}. If F is G-invariant, $f \in C^\infty(M, N)$, $x \in M$, then

$$\mathfrak{F}(g \cdot f)(x) = F(j^k_{g^{-1}} \circ f) = (g^{-1} \cdot F)(j^k_{g^{-1}} \circ f) = F(j^k_{g^{-1}} \circ f)$$

$$= (\mathfrak{F}f)(g^{-1} \cdot x) = (g \cdot \mathfrak{F}f)(x).$$
Conversely, if \mathcal{T} is G-equivariant and $\sigma \in J^k(M, N)$ with $a(\sigma) = x$ is represented by f then
\[g \cdot F(\sigma) = F(j^k_{g^{-1}}g^{-1} \cdot f) = \mathcal{T}(g^{-1} \cdot f)(g^{-1} \cdot x) = (g^{-1} \cdot \mathcal{T}f)(g^{-1} \cdot x) = \mathcal{T}f(x) = F(a). \]

(2.3) **Lemma.** Let G be a compact Lie group and M a smooth G-manifold with orbit structure of finite type (see [9]), then the induced action on $J^k(M, N)$ is of finite orbit type as well.

Proof. If $N = \mathbb{R}^n$ and M is a linear G-space then $J^k(M, N)$ is a linear G-space which is of finite orbit type. In the general case we can assume by the Whitney and Mostov embedding theorems that N is smoothly embedded in \mathbb{R}^n and M is smoothly equivariantly embedded in a Euclidean G-space \mathbb{R}^m. It will suffice to show that $J^k(M, N)$ is equivariantly embedded in $J^k(\mathbb{R}^m, \mathbb{R}^n)$. Let $\pi: Z \to M$ be an equivariant tubular neighbourhood of M in \mathbb{R}^m. Since Z is an open G-invariant set in \mathbb{R}^m, $J^k(Z, \mathbb{R}^n)$ is an open G-submanifold of $J^k(\mathbb{R}^m, \mathbb{R}^n)$, so we need only show that $J^k(M, N)$ is equivariantly embedded in $J^k(Z, \mathbb{R}^n)$.

Let i be the inclusion map of N in \mathbb{R}^n. Clearly, $(J^k i)_*: J^k(M, N) \to J^k(M, \mathbb{R}^n)$ and $(J^k \pi)_*: J^k(M, \mathbb{R}^n) \to J^k(Z, \mathbb{R}^n)$ are equivariant embeddings. $(J^k \pi)_* \circ (J^k i)_*$ is the desired equivariant embedding of $J^k(M, N)$ into $J^k(Z, \mathbb{R}^n)$. □

Thanks are due to the referee of an earlier version of this section for shortening my original proof.

By Lemma (2.3), the conditions of Theorem 1 imply that the G-manifold $J^k(M, N)$ is of finite orbit type. By a theorem of G. W. Schwarz [10, Theorem 2], there exist $A_1, \ldots, A_i \in D^G_k$, such that $F \in D^G_k$ iff $F = f(A_1, \ldots, A_i)$, for some $f \in C^\infty(\mathbb{R}^l, \mathbb{R})$. Hence, the operators $\partial_l, 1 < l < i$, may be chosen as those with $\text{sym } \partial_l = A_l$.

3. **The verification of Theorem 2.** In this section, M is a smooth principal G-bundle with corresponding fibration (M, π, B). $m = \dim M, a = \dim G$ and $b = m - a = \dim B$.

(3.1) **Lemma.** There exists an invariant generator $\xi: M \to \mathbb{R}^l, l \leq 2b + 1$, for $C^\infty(M)^G$.

Proof. By Whitney's embedding theorem there exists an embedding ζ of B into $\mathbb{R}^p, p \leq 2b + 1$. Since $C^\infty(M)^G = \pi^*C^\infty(B)$, we may choose $\xi = \zeta \circ \pi$. □

The action of G on M lifts in the usual way to $T(M)$ by $g \cdot (x, v) = (g \cdot x, g \cdot v)$, where $x \in M, v \in T_x(M), g \cdot x = \phi(x)$ and $g \cdot v = d\phi_g(x)v$. As in §1, $\Gamma^G(T(M))$ denotes the $C^\infty(M)^G$-module of G-invariant vector fields on M.

(3.2) **Lemma.** There exists a finite generator for $\Gamma^G(T(M))$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
ROBERT DELVER

PROOF. For each \(x \in M \), let \(H_x(M) \) be the horizontal tangent space to \(M \) at \(x \) with respect to a given principal connection \(\mathcal{D} \) on \(M \) and let \(V_x(M) \) be the vertical tangent space at \(x \). In \(T(M) \) we consider the subbundles \(H(M) = \bigcup_{x \in M} H_x(M) \) and \(V(M) = \bigcup_{x \in M} V_x(M) \). Since \(T(M) = H(M) \oplus V(M) \), we need only show that finite generators exist for \(\Gamma^G(H(M)) \) and \(\Gamma^G(V(M)) \), the \(C^\infty(M)^G \)-modules of \(G \)-invariant horizontal and vertical vector fields on \(M \).

First we construct a finite generator for \(\Gamma^G(H(M)) \). By Whitney's embedding theorem we may assume that \(B \) is embedded in \(\mathbb{R}^p, p < 2b + 1 \). Projecting the canonical basis of \(T(\mathbb{R}^p) \) onto \(T(B) \) we obtain a generator for \(T(B) \). The horizontal liftings with respect to \(\mathcal{D} \) of the elements of this generator constitute a generator for \(\Gamma^G(H(M)) \).

\(V(M) \) is a \(G \)-subbundle of the \(G \)-vector bundle \(T(M) \). The action of \(G \) on \(V(A_f) \) is given by

\[
(g \cdot (x, v)) = (g \cdot x, g \cdot v), \quad (3.3)
\]

where \((x, v) \in M \times V_x(M)\).

Let \(\text{Lie}(G) \) be the Lie algebra of \(G \). For \(l \in \text{Lie}(G) \), let the vertical vector field \(\tilde{l} \) on \(M \) be defined by

\[
\tilde{l}(x) = \left. \frac{d}{dt} (e^{t l}(x)) \right|_{t=0}, \quad x \in M. \quad (3.4)
\]

We define a left \(G \)-action on \(M \times \text{Lie}(G) \) by

\[
g \cdot (x, l) = (g \cdot x, \text{Ad}(g) l) \quad (3.5)
\]

where \(\text{Ad}(g) \) is the adjoint action of \(g \in G \) on \(\text{Lie}(G) \). With this action, \(M \times \text{Lie}(G) \) is isomorphic, as a \(G \)-vector bundle, to \(V(M) \). An isomorphism is given by \(\omega: M \times \text{Lie}(G) \to V(M): \)

\[
\omega(x, l) = (x, \tilde{l}(x)). \quad (3.6)
\]

We check that \(\omega \) is \(G \)-equivariant:

\[
\omega(g \cdot (x, l)) = \omega(g \cdot x, \text{Ad}(g) l) = (g \cdot x, \overline{\text{Ad}(g)} \tilde{l}(g \cdot x)) = (g \cdot x, g \cdot \tilde{l}(x)) = g \cdot \omega(x, l),
\]

for all \(g \in G \) and \((x, l) \in M \times \text{Lie}(G)\).

Let \(E = M \times^G \text{Lie}(G) \) be the vector bundle over \(B \) of fiber type \(\text{Lie}(G) \) associated with the principal bundle \(M \) and the adjoint action of \(G \) on \(\text{Lie}(G) \) [4, XVI, 16.14.7]. In our case \(E \) is the quotient of \(M \times \text{Lie}(G) \) by the action defined by (3.5). The invariant vertical vector fields on \(M \) are in bijective correspondence to the sections of \(E \), (see e.g. [6, Theorem 4.8.1]). Since the \(C^\infty(B) \)-module of cross sections of \(E \) is finitely generated, [5, p. 76, Lemma 2], the same is true for the \(C^\infty(M)^G \)-module \(\Gamma^G(V(M)) \). This completes the proof.

(3.7) Lemma. \(\{X^1, \ldots, X^n\} \subset \Gamma^G(T(M)) \) is a generator for \(\Gamma^G(T(M)) \) iff \(\{X^1(x), \ldots, X^n(x)\} \) generates the vector space \(T_x(M) \), for all \(x \in M \).
Proof. Clearly a generator of $\Gamma^G(T(M))$ generates the individual tangent spaces. To prove the converse, let

$$\{X^1, \ldots, X^n \} \subset \Gamma^G(T(M)) \quad (3.8)$$

be such $\{X^1(x), \ldots, X^n(x)\}$ generates $T_x(M)$, for all $x \in M$. For each $x \in X$ we may choose a subset of (3.8)

$$\{X^{i(x)}, \ldots, X^{n(x)}\} \quad (3.9)$$

which, evaluated at x, is a basis for $T_x(M)$. Being a basis is an open condition so there exists an open neighbourhood 0_x of x such that (3.9), evaluated at any $y \in 0_x$ is a basis for $T_y(M)$. Because $g \cdot X^i(x) = X^i(g \cdot x)$, $x \in M$ and $1 < i < n$, and since the action of G on $T(M)$ preserves linear independence (3.9), evaluated at y is a basis for $T_y(M)$ for all $y \in G \cdot 0_x = \pi^{-1}(U_x)$, where $U_x = \pi(0_x)$.

Let $\{V_a\}_{a \in I}$ be a locally finite refinement of the covering $\{U_x\}_{x \in M}$ of B. By the above construction, for each $\alpha \in I$, we have a subset of m elements of (3.8).

$$\{X^{i_1(a)}, \ldots, X^{i_m(a)}\}, \quad (3.10)$$

which, evaluated at any $x \in \pi^{-1}(V_a)$, is a basis for $T_x(M)$. Hence any $Y \in \Gamma^G(T(M))$ is of the form

$$Y(x) = \sum_{i=1}^{m} a_{i(a)}(x) X^{i(a)}(x), \quad x \in \pi^{-1}(V_a), \quad (3.11)$$

where $a_{i(a)} \in C^\infty(\pi^{-1}(V_a))^G$, $1 < i < m$, $\alpha \in I$.

Let $\{f_a\}_{a \in I}$ be a partition of unity subordinate to $\{V_a\}_{a \in I}$ with supp $f_a \subset V_a$, $\forall \alpha \in I$. Then

$$Y = \sum_{\alpha \in I} f_a \circ \pi \sum_{i=1}^{m} a_{i(a)} X^{i(a)} \quad (3.10)$$

which may be written as

$$Y = \sum_{i=1}^{n} b_i X^i, \quad (3.11)$$

with $b_i \in C^\infty(M)^G$, $1 < i < m$, since each b_i is locally a finite sum of functions $(f_a \circ \pi) a_{i(a)}$ which are smooth and G-invariant.

Proof of Theorem 2. First we consider the case where M is a trivial principal bundle: $M = V \times G$. Moreover we assume that V is an open set of \mathbb{R}^b. For $k \in \{1, 2, 3, \ldots \}$ let $A_k: J^k(V \times G) \to J^k_{V \times (e)}(V \times G)$ be defined by

$$A_k(\sigma) = g^{-1} \cdot \sigma \quad \text{if } \alpha(\sigma) = (v, g). \quad (3.12)$$

Then $\{J^k(V \times G), A_k, J^k_{V \times (e)}(V \times G)\}$ is a fibration of the principal G-bundle $J^k(V \times G)$, so

$$C^\infty(J^k(V \times G))^G = A_k^* C^\infty(J^k_{V \times (e)}(V \times G)). \quad (3.13)$$
The mapping B_k, defined by

$$B_k(j^{k}_{(b,e)}f) = (b, j^{k}_{(0,e)}(f \circ t_b)), \quad (3.14)$$

where $f \in C^\infty(\mathbb{R}^b \times G)$ and t_b is the translation in $\mathbb{R}^b \times G$, given by $t_b(a, h) = (a + b, h)$, with $b \in \mathbb{R}^b$ and $(a, h) \in \mathbb{R}^b \times G$, is a diffeomorphism of $J^{k}_{(e)}(\mathbb{R}^b \times G)$ onto $\mathbb{R}^b \times J^{k}_{(e)}(\mathbb{R}^b \times G)$. The space $J^{k}_{(e)}(\mathbb{R}^b \times G)$ carries a natural linear structure. By choosing a basis it is identified with \mathbb{R}^N, $N = \dim J^{k}_{(e)}(\mathbb{R}^b \times G)$ and we may consider B_k as a diffeomorphism of $J^{k}_{(e)}(\mathbb{R}^b \times G)$ onto $\mathbb{R}^b \times \mathbb{R}^N$. From (3.13) we obtain

$$C^\infty(J^{k}(V \times G))^{G} = (B_k \circ A_k)^* C^\infty(V \times \mathbb{R}^N). \quad (3.15)$$

The canonical projections of $\mathbb{R}^b \times \mathbb{R}^N$ on its first and second factors are denoted by p_1 and p_2. Let \mathcal{G}_k: $C^\infty(V \times G) \to C^\infty(V \times G, \mathbb{R}^N)$ be the G-equivariant linear operator defined by

$$\mathcal{G}_k = p_2 \circ B_k \circ A_k \circ j^k \quad (3.16)$$
and let π' be the canonical projection of $V \times G$ onto V. From Proposition (2.2) and formula (3.15) it follows that $\mathcal{G} \in \mathcal{G}_k^{G}(V \times G)$ iff there exists some $a \in C^\infty(\mathbb{R}^b \times \mathbb{R}^N)$ such that, for all $f \in C^\infty(V \times G)$,

$$\mathcal{G}f = a(p_1 \circ B_k \circ A_k \circ j^k, p_2 \circ B_k \circ A_k \circ j^k) \quad (3.17)$$
which equals $a(\pi', \mathcal{G}_k f) = a(\pi', \mathcal{G}_k f)$. Hence

$$\mathcal{G}^{G}_k(V \times G) = (\pi', \mathcal{G}_k)^* C^\infty(\mathbb{R}^b \times \mathbb{R}^N). \quad (3.18)$$

Let \mathcal{G}^i_k, $1 < i < N$, denote the ith component of \mathcal{G}_k. Clearly each \mathcal{G}^i_k is a linear G-equivariant differential operator on $C^\infty(V \times G)$.

It is easy to see that there exists an invariant basis

$$\{ Y^1, \ldots, Y^m \} \quad (3.19)$$
for $T(V \times G)$ ($m = \dim V \times G$). From the linearity of \mathcal{G}_k it follows that each \mathcal{G}^i_k, $1 < i < N$, can be written uniquely as

$$\mathcal{G}^i_k = \sum_{|\alpha| < k} a_i^\alpha Y^\alpha, \quad a_i^\alpha \in C^\infty(V \times G), \quad (3.20)$$
(see e.g. [12, Theorem 1.1.2]). It follows from the G-equivariance of \mathcal{G}^i_k and of the operators Y^α, $|\alpha| < k$, that the coefficients a_i^α, $|\alpha| < k$, $1 < i < N$, are G-invariant. Thus we get the \mathcal{G}^i_k in the form

$$\mathcal{G}^i_k = \sum_{|\alpha| < k} (b_i^\alpha \circ \pi') Y^\alpha, \quad 1 < i < N, \quad (3.21)$$
where $b_i^\alpha \in C^\infty(V)$, $|\alpha| < k$, $1 < i < N$.

Substituting (3.21) into (3.18) we obtain that $\mathcal{G} \in \mathcal{G}^{G}_k(V \times G)$ iff there exists some $a \in C^\infty(\mathbb{R}^b \times \mathbb{R}^N)$ such that

$$\mathcal{G}f = a(\pi', \sum_{|\alpha| < k} (b_i^\alpha \circ \pi') Y^\alpha f, \ldots, \sum_{|\alpha| < k} (b_N^\alpha \circ \pi') Y^\alpha f), \quad (3.22)$$
for all $f \in C^\infty(V \times G)$. The right-hand side of (3.22) is just a function of π'.

and the operators Y^α, $|\alpha| < k$. Conversely, any such function represents an element of $\mathcal{D}_k^G(V \times G)$. Hence,
\begin{equation}
\mathcal{D}_k^G(V \times G) = (\pi', (Y^\alpha)_{|\alpha| < k})C^\infty(\mathbb{R}^b \times \mathbb{R}^{m^*}).
\end{equation}

Let $(U_e)_{e \in I}$, where I is some index set, be a locally finite atlas for B such that the principal bundles M_e induced by M over U_e, $e \in I$, are trivializable. Then for each $e \in I$ there exists an isomorphism λ_e of M_e onto the product bundle $V_e \times G$, where $V_e \subset \mathbb{R}^b$ is the parameter domain of U_e.

We define a bijection Λ^k_e of $\mathcal{D}_k^G(V_e \times G)$ onto $\mathcal{D}_k^G(M_e)$ by
\begin{equation}
(\Lambda^k_e f)(\xi) = \lambda^*_e(f \circ \lambda_e^{-1}), \quad f \in C^\infty(M_e).
\end{equation}

Let π'_e be the canonical projection of $V_e \times G$ onto V_e and let (Y^1_e, \ldots, Y^m_e) be a G-invariant basis for $T(V_e \times G)$. From (3.23) and (3.24) we obtain that $\mathbb{B} \in \mathcal{D}_k^G(M_e)$ iff
\begin{equation}
\mathbb{B} = \Lambda^k_e(q(\pi'_e, (Y^\alpha)_{|\alpha| < k})),
\end{equation}
for some $q \in C^\infty(\mathbb{R}^l \times \mathbb{R}^{m^*})$. Or
\begin{equation}
\mathbb{B} = q(\pi'_e \circ \lambda_e, ((\Lambda^k_e Y^\alpha)_e)_{|\alpha| < k}).
\end{equation}

Let $\xi_e: M_e \rightarrow \mathbb{R}^l$ and (X^1_e, \ldots, X^n_e) be the restrictions of the given generators for $C^\infty(M)^G$ and $\Gamma^G(T(M))$ to M_e. Then
\begin{equation}
\pi'_e \circ \lambda_e = d \circ \xi_e,
\end{equation}
for some $d \in C^\infty(\mathbb{R}^l, \mathbb{R}^b)$. Since $(X^1_e(x), \ldots, X^n_e(x))$ generates $T_x(M_e)$, $\forall x \in M_e$, it follows from Lemma (3.7) that
\begin{equation}
\Lambda^k_e Y^i_e = \sum_{j=1}^n (e^j_e \circ \xi_e)X^j_e,
\end{equation}
where $e^j_e \in C^\infty(\mathbb{R}^l)$, $1 \leq i < m$, $1 \leq j < n$. After substitution of (3.27) and (3.28) into (3.26) it is easy to see that we may write this equality as
\begin{equation}
\mathbb{B} = r(\xi_e, (X^\alpha)_e)_{|\alpha| < k},
\end{equation}
for some $r \in C^\infty(\mathbb{R}^l, \mathbb{R}^{m^*})$.

Let $(u_e)_{e \in I}$ be a partition of unity on B subordinate to $(U_e)_{e \in I}$ with $\text{supp}(u_e) \subset U_e$, $e \in I$. For a given $\xi \in \mathcal{D}_k^G(M_e)$ let $\xi_e \in \mathcal{D}_k^G(M_e)$ be the restriction of ξ to $C^\infty(M_e)$. (F_e is defined by $\text{sym}F_e = \text{sym}F_e|J^u(M_e)$.) By (3.29) there exists a $r_e \in C^\infty(\mathbb{R}^l \times \mathbb{R}^{m^*})$ such that
\begin{equation}
F_e = r_e(\xi_e, (X^\alpha)_e)_{|\alpha| < k}.
\end{equation}

So
\begin{equation}
F = \sum_{e \in I} (u_e \circ \pi)r_e(\xi_e, (X^\alpha)_e)_{|\alpha| < k}.
\end{equation}

Since
\begin{equation}
(U_e \circ \pi)r_e(\xi_e, (X^\alpha)_e)_{|\alpha| < k}) = (U_e \circ \pi)r_e(\xi_e, (X^\alpha)_e)_{|\alpha| < k})
\end{equation}
it follows from (3.31) that
\begin{equation}
F = a(\xi, (X^\alpha)_{|\alpha| < k}),
\end{equation}
for some $a \in C^\infty(\mathbb{R}^l \times \mathbb{R}^{n^*})$. Conversely, (3.32) implies that $\mathcal{F} \in \mathcal{D}_k^G(M)$. This completes the proof.

BIBLIOGRAPHY