Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A simple expression for the Casimir operator on a Lie group


Author: Mary F. Anderson
Journal: Proc. Amer. Math. Soc. 77 (1979), 415-420
MSC: Primary 22E46
DOI: https://doi.org/10.1090/S0002-9939-1979-0545606-3
MathSciNet review: 545606
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The expression for the Casimir operator for a real semisimple Lie group G in terms of coordinates given by the Iwasawa decomposition $ G = KAN$ reduces on G/N to the difference of an elliptic operator with constant coefficients on A and an invariant operator on M. This result immediately identifies the principal series of induced representations with representations defined on the eigenspaces of the restriction of the Casimir operator to G/N.


References [Enhancements On Off] (What's this?)

  • [1] R. Courant and D. Hilbert, Methods of mathematical physics, vol. 2, Interscience, New York, 1962.
  • [2] L. Ehrenpreis, The use of partial differential equations for the study of group representations, Proc. Sympos. Pure Math., vol. 26, Amer. Math. Soc., Providence, R. I., 1973, pp. 317-320. MR 0344379 (49:9118)
  • [3] T. J. Enright and V. S. Varadarajan, On an infinitesimal characterisation of the discrete series, Ann. of Math. 102 (1975), 1-15. MR 0476921 (57:16472)
  • [4] Harish-Chandra, Harmonic analysis on reductive groups. I, J. Functional Analysis 19 (1975), 104-204. MR 0399356 (53:3201)
  • [5] -, Harmonic analysis on reductive groups. II, Invent. Math. 36 (1976), 1-55. MR 0439993 (55:12874)
  • [6] -, Harmonic analysis on reductive groups. III, Ann. of Math. (2) 104 (1976), 117-201. MR 0439994 (55:12875)
  • [7] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962. MR 0145455 (26:2986)
  • [8] R. Parasarathy, Dirac operator and the discrete series, Ann. of Math. 96 (1972), 1-30. MR 0318398 (47:6945)
  • [9] P. C. Trombi and V. S. Varadarajan, Spherical transforms on semisimple Lie groups, Ann. of Math. 94 (1971), 246-303. MR 0289725 (44:6913)
  • [10] M. Pazirandeh, Invariant differential operators on a real semisimple Lie algebra and their radial components, Trans. Amer. Math. Soc. 182 (1973), 119-131. MR 0335689 (49:469)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22E46

Retrieve articles in all journals with MSC: 22E46


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1979-0545606-3
Article copyright: © Copyright 1979 American Mathematical Society

American Mathematical Society