Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

On $ p$-power central polynomials


Author: David J. Saltman
Journal: Proc. Amer. Math. Soc. 78 (1980), 11-13
MSC: Primary 16A38; Secondary 16A40
MathSciNet review: 548073
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show in this note that if $ {p^2}\vert n$, p is an odd prime and $ UD(Q,n)$ is the generic division algebra of degree n over the rational number field, then for $ z \in UD(Q,n),{z^p}$ central implies z is central.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A38, 16A40

Retrieve articles in all journals with MSC: 16A38, 16A40


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1980-0548073-7
PII: S 0002-9939(1980)0548073-7
Article copyright: © Copyright 1980 American Mathematical Society