ON A BOUNDEDNESS CONDITION FOR OPERATORS WITH A SINGLETON SPECTRUM

J. P. WILLIAMS

Abstract. For a bounded invertible linear operator A let \mathcal{B}_A consist of those operators X for which $\sup\{\|A^nXA^{-n}\|: n > 0\} > \infty$. It is shown that \mathcal{B}_A contains the ideal of compact operators if and only if A is similar to a scalar multiple of a unitary operator. Also, if A is invertible and either has a one-point spectrum or is positive definite then $\mathcal{B}_A \cap \mathcal{B}_{A^{-1}}$ is the commutant of A.

In [2] Deddens shows that if $A = \int \lambda \ dE_\lambda$ is a positive invertible operator on a separable Hilbert space \mathcal{H} then the nest algebra associated with the nest $\{E[0, \lambda]: \lambda > 0\}$ coincides with the set \mathcal{B}_A of operators X for which $\sup\{\|A^nXA^{-n}\|: n > 0\} < \infty$. Conversely every nest algebra is a \mathcal{B}_A for some A. His results suggest that the boundedness condition defining \mathcal{B}_A is of interest for any invertible A.

The present paper has three goals, namely to decide when \mathcal{B}_A contains the compact operators, to simplify the discussion of the case in which $\mathcal{B}_A = \{A\}'$ with \mathcal{H} finite dimensional, and to give a partial resolution of the same problem in the general case: $\mathcal{B}_A \cap \mathcal{B}_{A^{-1}} = \{A\}'$ if the spectrum of A is a singleton.

It is a pleasure to acknowledge an indirect conversation with A. L. Shields which put me onto a theorem of Cartwright (see [1, 10.2.1]) which was a major ingredient in the original proof of Lemma 2. The simple argument given below was inspired by a comment of J. A. Deddens about a detail of that proof. I am grateful to him for several conversations about the results of this note.

We begin by resolving a question raised in [2]. (The referee mentions that the same result has been obtained by J. Stampfli and also by D. Herrero by different methods.)

Theorem 1. \mathcal{B}_A contains all the compact operators for some operator A if and only if A is similar to a scalar multiple of a unitary operator.

Proof. Let $\alpha_n(X) = A^nXA^{-n}$ for $n > 0$. If $\sup\{\|\alpha_n(K)\|: n > 0\} < \infty$ for each compact operator K then the linear transformations α_n are uniformly bounded on the Banach space of compact operators by the Banach-Steinhaus theorem and $\|\alpha_n\| < M$. But then if $f \otimes g$ denotes the rank one operator that takes $h \in \mathcal{H}$ to $(h, g)f$ we have $\|A^nf\|\|A^*g\| = \|A^nf \otimes A^*g\| = \|\alpha_n(f \otimes g)\| < M$ for all unit vectors f and g. This gives $\|A^n\|\|A^{-n}\| < M$.
for \(n > 0 \). In [2] it is shown that this condition implies that \(A \) is similar to a scalar multiple of a unitary operator.

The converse assertion is clear.

In general one has \(\mathfrak{B}_A \supseteq \{ A \}' \), the commutant of \(A \). In [2] it is shown that equality holds with \(\dim \mathfrak{K} < \infty \) if and only if \(A \) is a nonzero scalar multiple of an operator of the form \(1 + N \), \(N \) nilpotent. The necessity of this condition is also an immediate consequence of the next result.

Lemma 1. Let \(A \) be a bounded operator with \(\mathfrak{B}_A = \{ A \}' \). If \(\lambda \) is an eigenvalue of \(A \), \(\bar{\mu} \) an eigenvalue of \(A^* \), and if \(|\lambda| < |\mu| \) then \(\lambda = \mu \).

Proof. Suppose \(f \) and \(g \) are unit vectors with \(Af = \lambda f \), \(A^* \mu = \bar{\mu} g \). Then \(A^n(f \otimes g)A^{-n} = \lambda^n \mu^{-n}(f \otimes g) \) is bounded for \(n > 0 \), hence \(f \otimes g \) commutes with \(A \) and this implies \(\lambda = \mu \).

We now give a simpler proof that the condition \(A = 1 + \text{nilpotent} \) is sufficient for \(\mathfrak{B}_A = \{ A \}' \). Observe that \(A = 1 + Q' \) with \(Q' \) nilpotent (quasinilpotent) if and only if \(A = e^Q \) with \(Q \) nilpotent (quasinilpotent). Moreover,

\[
e^{\lambda Q} X e^{-\lambda Q} = \sum_{n=0}^{\infty} \frac{\lambda^n}{n!} \delta_n^Q(X), \quad \lambda \in \mathbb{C},
\]

where \(\delta_Q \) is the operator on \(\mathfrak{B}(\mathfrak{K}) \) given by \(\delta_Q(X) = QX - XQ \). Now if \(Q \) is nilpotent so is \(\delta_Q \), hence the entire function \(e^{\lambda Q} X e^{-\lambda Q} \) reduces to a polynomial and is therefore bounded on the positive integers only if it is constant, that is, only if \(\delta_Q(X) = 0 \) and \(X \in \{ Q \}' = \{ A \}' \).

In the remainder of this paper we are concerned with sharpening the preceding argument to see to what extent \(A = 1 + Q \), \(Q \) quasinilpotent, is sufficient for \(\mathfrak{B}_A = \{ A \}' \).

Lemma 2.

\[
\sup \{ \| e^{tB} X e^{-tB} \| : t > 0 \} < e^{2\|B\|} \sup \{ \| e^{nB} X e^{-nB} \| : n = 1, 2, \ldots \}
\]

for any operators \(X \) and \(B \).

Proof. Each positive real number \(t = n + r \) with \(0 < r < 1 \), and \(e^{rB} \) has norm at most \(e^{\|B\|} \).

The preceding lemma gives another proof of the result of [2] that \(\mathfrak{B}_A \cap \mathfrak{B}_{A^{-1}} = \{ A \}' \) for \(A \) positive and invertible. Write \(A = e^B \) with \(B \) Hermitian. If \(X \) belongs to \(\mathfrak{B}_A \cap \mathfrak{B}_{A^{-1}} \) and \(\lambda = t + is \) then

\[
\sum_{n=0}^{\infty} \frac{\lambda^n}{n!} \delta_n^B(X) = e^{isB} e^{tB} X e^{-tB} e^{-isB}
\]

has norm at most \(\sup \{ \| e^{tB} X e^{-tB} \| : t \in \mathbb{R} \} < \infty \) so that, by Liouville's Theorem, the entire function on the left is constant and

\[
\delta_B(X) = 0, \quad X \in \{ B \}' \subseteq \{ A \}'.
\]

In [2] it is conjectured that if \(A = 1 + Q \) with \(Q \) quasinilpotent then \(\mathfrak{B}_A = \{ A \}' \). We are unable to prove this. The next result, however, shows that \(\mathfrak{B}_A \cap \mathfrak{B}_{A^{-1}} = \{ A \}' \).

Theorem 2. If \(Q \) is quasinilpotent and \(X \) is an operator for which \(\sup \{ \| e^{nQ} X e^{-nQ} \| : n = \pm 1, \pm 2, \ldots \} < \infty \) then \(QX = XQ \).
Proof. Let \(g_\phi(z) = \phi(e^{izQ}Xe^{-izQ}) \) for \(\phi \) a linear functional of norm 1 on \(\mathcal{B}(\mathcal{K}) \). Then \(g_\phi \) is an entire function of order

\[
\rho = \lim_{r \to \infty} \frac{\log \log M_\phi(r)}{\log r} \leq \lim_{r \to \infty} \frac{\log 4\|Q\| + \log r}{\log r} = 1.
\]

(Here \(M_\phi(r) \) is the maximum of \(|g_\phi| \) on \(|z| < r\).)

Suppose that \(g = g_\phi \) has order \(\rho < 1 \). If we choose \(\alpha \) with \(\rho < \alpha < 1 \) and \(|g(z)| \leq K \exp(r^\alpha) \) for \(|z| = r \) large enough. Let \(f(z) = g(iz) \). Then \(|f(z)| \leq C \exp(r^\alpha) \) for \(z \) in the open right half-plane \(H^+ \). Also, \(|f(iy)| \leq M < \infty \) for all real \(y \) by Lemma 2. It follows by a standard Phragmén-Lindelöf argument (see [3, p. 282]) that \(|f(z)| \leq M \) in \(H^+ \). Thus \(|g(z)| \leq M \) in the lower half-plane. The same argument applied to \(g(iz) \) shows that \(g \) is bounded on \(\mathbb{C} \).

Therefore \(0 = g_\phi(0) = \phi(QX - XQ) \).

It remains to consider the case in which \(g_\phi \) has order 1. In this case we claim that \(g_\phi \) has type 0. To prove this, let \(\epsilon > 0 \) and choose \(N \) so that \(\|\delta^n\| < \epsilon^n \) for \(n > N \). Then

\[
|g_\phi(z)| \leq \sum_{n=0}^N \frac{r^n}{n!} |\phi(\delta^n(X))| + \sum_{n=N+1}^\infty \frac{r^n}{n!} \epsilon^n \|X\| \leq \|X\| \left(K \cdot \sum_{n=0}^N r^n + \epsilon^n \right) < \|X\|(K + 1)e^n
\]

for \(|z| = r \) large enough. It follows that the type \(\tau \) of \(g_\phi \) satisfies \(\tau = \lim_{r \to \infty} \log M_\phi(r)/r \leq \epsilon \). Hence \(\tau = 0 \) as \(\epsilon \) is arbitrary.

Therefore \(g_\phi \) is of zero exponential type and is bounded on \(\mathbb{Z} \), hence is constant (see [1, 10.2.11]).

We have \(\phi(QX - XQ) = 0 \) for all \(\phi \in \mathcal{B}(\mathcal{K})^* \) and so \(QX - XQ = 0 \).

If \(\mathcal{K} \) is finite-dimensional then \(\mathcal{B}(\mathcal{K}) = \mathcal{R}(\delta_A) \oplus (A^*)^* \) for any operator \(A \), where the indicated orthogonality is with respect to the (trace) inner product on \(\mathcal{B}(\mathcal{K}) \). By considering \(\mathcal{R}_A \) for \(A = 1 + Q \) one obtains a characterization of \(\{Q\}' \), for \(Q \) nilpotent, from the preceding results. It may be of interest to determine the corresponding characterization of the range of nilpotent and quasinilpotent derivations \(\delta_Q \).

We conclude by mentioning that, as noted in [2], Theorem 2 implies that \(\mathcal{B}_A \cap \mathcal{B}_A^{-1} = \{A\}' \) for any operator \(A \) that is quasisimilar to an operator of the form \(1 + Q \). \(Q \) quasinilpotent. This fact would seem to discourage the search for a converse result. By certainly one can find a stronger necessary condition than that of the above lemma.

Note added. After this paper was completed I learned that Paul Roth has found a quasinilpotent \(Q \) such that \(\mathcal{B}_A \neq \{A\}' \) for \(A = 1 + Q \).

References

Department of Mathematics, Indiana University, Bloomington, Indiana 47401