THERE ARE NO Q-POINTS IN LAVER’S MODEL
FOR THE BOREL CONJECTURE

ARNOLD W. MILLER

ABSTRACT. It is shown that it is consistent with ZFC that no nonprincipal
ultrafilter on ω is a Q-point (also called a rare ultrafilter).

All ultrafilters are assumed to be nonprincipal and on ω.

Definitions. (1) U is a Q-point (also called rare [C]) iff $\forall f \in \omega^\omega$ if f is
finite-to-one then $\exists X \in U, f \upharpoonright X$ is one-to-one.
(2) U is a P-point iff $\forall f \in \omega^\omega, \exists X \in U, f \upharpoonright X$ is constant or finite-to-one.
(3) U is a semi-Q-point (also called rapid [C], if $\forall f \in \omega^\omega, \exists g \in \omega^\omega, \forall n f(n) < g(n)$ and $g''\omega \in U$.
(4) U is semiselective iff it is a P-point and a semi-Q-point.
(5) For $f, g \in \omega^\omega, [f < g$ iff $\exists n \forall m > n (f(m) < g(m))]$.
(6) For $S \subseteq \omega^\omega, [S$ is dominant iff $\forall f \in \omega^\omega \exists g \in S (f < g)]$.

Theorem 1 (Ketonen [Ke]). If every dominant family has cardinality 2^{\aleph_0},
then there exists a P-point.

Theorem 2 (Mathias, Taylor [M3]). If there exists a dominant family of
cardinality \aleph_1, then there exists a Q-point.

Kunen [Ku1] showed that adding \aleph_2 random reals to a model of ZFC +
GCH gives a model with no semiselective ultrafilters. More recently he
showed [Ku2] that if one first adds \aleph_1 Cohen reals (then the random reals)
then the resulting model has a P-point. In either case one has a dominant
family of size \aleph_1 so there is a Q-point.

Theorem 3. The following are equivalent:
(1) U is a semi-Q-point.
(2) Given $P_n \subseteq \omega$ finite for $n < \omega$ there exists $X \in U$ such that $\forall n, |X \cap P_n| < n$.
(3) $\exists h \in \omega^\omega$ such that given $P_n \subseteq \omega$ finite for $n < \omega$ there exists $X \in U$ such
that $\forall n, |X \cap P_n| < h(n)$.
Proof. (1) \Rightarrow (2). Let $f(n) = \sup(\bigcup_{m \leq n} P_m) + 1$. Suppose that for all n, $g(n) > f(n)$; then $P_n \cap g''\omega \subseteq \{ g(0), \ldots, g(n - 1) \}$.
(3) \Rightarrow (1). Assume f increasing. Choose $n_0 < n_1 < n_2 < \cdots$, so that $h(k + 1) < n_k$. Let $P_k = f(n_k)$ and let $Y \in U$ so that $|Y \cap P_k| < h(k)$. Then, for each $m > n_0, |Y \cap f(m)| < m$, since if $n_k \leq m < n_{k+1}$ then

Received by the editors April 3, 1978.
AMS (MOS) subject classifications (1970). Primary 02K05.
© 1980 American Mathematical Society
0002-9939/80/0000-0023/$02.00

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Hence if \(g \in \omega^\omega \) enumerates \(Y - f(n_0 + 1) \) in increasing order then \(\forall n, f(n) < g(n) \). □

Define \(U \times V = \{ A \subseteq \omega \times \omega: \{ n: \{ m: (n, m) \in A \} \in V \} \in U \} \). Whilst \(U \times V \) is never a \(P \)-point or a \(Q \)-point, nevertheless:

Theorem 4. \(U \times V \) is a semi-\(Q \)-point iff \(V \) is a semi-\(Q \)-point.

Proof. (\(\Rightarrow \)) Given \(P_k \subseteq \omega \) finite let \(P_k^* = \{ \langle n, m \rangle: m \in P_k \) and \(n < m \)\). Choose \(Z \in U \times V \) so that \(\forall k, |Z \cap P_k^*| < k \). Let \(n \in \omega \) so that \(Y = \{ m > n: (n, m) \in Z \} \subseteq V \) then \(\forall k, |Y \cap P_k| < k \). (More generally if \(f: U \rightarrow V \) and \(U \) is a semi-\(Q \)-point and \(f \) is finite-to-one then \(V \) is a semi-\(Q \)-point.)

(\(\Leftarrow \)) Given \(P_k \subseteq \omega^2 \) finite, choose \(n_k \) increasing so that \(P_k \subseteq n_k \). Let \(Y \in V \) so that \(\forall k, |n_k \cap Y| < k \). Let \(Z = \bigcup_{k<\omega}(k) \times \{ m: m \in Y \) and \(m > n_k \} \)

which has cardinality \(< (k + 1)^2 \). □

Theorem 5. In Laver’s model \(N \) for the Borel conjecture \([L]\) there are no semi-\(Q \)-points.

Proof. Some definitions from \([L]\):

1. \(T \in \mathcal{F} \) iff \(T \) is a subtree of \(\omega^{<\omega} \) with the property that there exist \(s \in T \) (called stem \(T \)) so that \(\forall t \in T, t \subseteq s \) or \(s \subseteq t \), and if \(t \supseteq s \) and \(t \in T \) then there are infinitely many \(n \in \omega \) such that \(t\langle n \rangle \in T \).

2. \(T^* \succ T \) iff \(\hat{T} \subseteq T \).

3. \(T_s = \{ t \in T: s \subseteq t \) or \(t \subseteq s \} \).

4. \(T^0 \succ \hat{T} \) iff \(T \succ \hat{T} \) and they have the same stem.

5. For \(x < y < \omega \) let \([x, y) = \{ n < \omega: x < n < y \} \).

Lemma 1. Suppose we are given \(T \in \mathcal{F} \) and finite sets \(F_s \) for each \(s \in T - \emptyset \) such that for each \(s \in T - \emptyset \):

- (a) if \(s = (k_0, \ldots, k_m, k_{n+1}) \), then \(F_s \subseteq [k_m, k_{n+1}) \);
- (b) if \(s = \langle n \rangle \), then \(F_s \subseteq [0, n) \);
- (c) \(\exists N < \omega \forall t \) immediately below \(s \) in \(T|F_s| < N \). For any \(\hat{T} \succ T \) let \(H_s = \bigcup \{ F_s: s \in \hat{T} \} \). Then \(\exists T^1, T^0 \supseteq T \) such that \(H_{T^0} \cap H_{T^1} \) is finite.

Proof. We may as well assume that the stem of \(T \) is \(\emptyset \). Given \(Q \) any infinite family of sets of cardinality \(N < \omega \) there exists \(G, |G| < N \), \(\exists \tilde{Q} \subseteq Q \) infinite so that \(\forall F, \tilde{F} \in \tilde{Q}, F \cap \tilde{F} \subseteq G \) (i.e., a \(\Delta \)-system). Now trim \(T \) to obtain \(\hat{T} \succ T \) so that \(\forall s \in T, \exists G_s \subseteq [k_n, \omega) \) finite \((s = (k_0, \ldots, k_n)) \) and for all \(\hat{t} \) immediately below \(s \) in \(\hat{T} \), \((F_s \cap F_{\hat{t}}) \subseteq G_s \). Build two sequences of finite subtrees of \(\hat{T} \):

\[
T^0_n \subseteq T^1_{n+1} \cdots, \quad T^1_n \subseteq T^0_{n+1} \cdots
\]
so that
\[\bigcup_{s \in T_0^i} (F_s \cup G_s) \cap \bigcup_{s \in T_1^i} (F_s \cup G_s) \subseteq G_\emptyset \]
and \(\bigcup_{n < \omega} T_i^n = T_i > \hat{T} \) for \(i = 0, 1 \).

This is done as follows: Suppose we have \(T_0^0, T_1^0 \) and we are presented with \(s \in T_0^0 \) and asked to add an immediate extension of \(s \) to \(T_0^0 \). Then since \(\{ F_t - G_t: t \text{ immediately below } s \text{ in } \hat{T} \} \) is a family of disjoint sets and \(G_t \subseteq [k_n, \omega) \) where \(t = (k_0, \ldots, k_n) \) we can find infinitely many \(t \) immediately below \(s \) in \(\hat{T} \) so that
\[[(F_t - G_t) \cup G_t] \cap \bigcup_{s \in T_*^i} (F_s \cup G_s) = \emptyset. \qquad \Box \]

The above is a double fusion argument.

Some more definitions from [L]:

(1) Fix a natural \(\omega \)-ordering of \(\omega^{<\omega} \) and for any \(T \in \mathcal{F} \) transfer it to \(\{ t \in T: \text{stem } T \subseteq t \} \) in a canonical fashion. \(T(n) \) denotes the \(n \)th element of \(\{ t \in T: \text{stem } T \subseteq t \} \) for \(t \in T \). (2) For \(T \) and \(V \), \(T < V \) and \(V < n, T(i) = V(i) \).

(3) The p.o. \(\mathbf{P}_{\omega^2} \) is the \(\omega_2 \)-iteration of \(\mathcal{F} \) with countable support (\(p \vdash \alpha \Rightarrow \forall \gamma \in \alpha \vdash \gamma(n) = f(n) \)) and \(\text{supp}(\alpha) = \{ \alpha: \forall n < \omega, \gamma(n) = f(n) \} \) is countable.

(4) For \(K \) finite and \(n < \omega \), \(p, q \in K \) such that \(p \vdash \forall i \in K, p(i) \vdash \forall n \vdash \alpha \vdash \gamma(n) \Rightarrow \gamma(n) = f(n) \), then \(p \vdash \forall i \in K, \gamma(i) = f(i) \).

Lemma 2. Let \(f \) be a term denoting the first Laver real and \(\tau \) any term. If \(p \in \mathbf{P}_{\omega^2} \) and \(p \vdash \tau \in \omega^n \vdash \forall n \vdash \gamma(n) < \tau(n) \) and \(\tau \) increasing then \(\exists Z_0, Z_1 \) such that \(Z_0 \cap Z_1 \) is finite.\n
Proof. Construct a sequence \(p < q \) so that \(\bigcup_{n < \omega} K_n = \bigcup_{n < \omega} \text{supp}(p) \) and \(0 \in K_0 \). Having gotten \(p_n \), let \(s = (k_0, \ldots, k_m) \) be \(p_n(0)(n) \). Then for each \(i \leq m + 1 \),
\[p_t = \langle p_n(0), \bigcap_{[1, \omega_2]} \rangle \vdash \forall t \in k_n, \tau(i) = f(i). \]

Hence by applying Lemma 6 of [L] \(m + 2 \) many times we can find \(q \in K_n \) such that \(\bigcup_{n < \omega} K_n = \bigcup_{n < \omega} \text{supp}(p) \) and \(0 \in K_0 \). Having gotten \(p_n \), let \(s = (k_0, \ldots, k_m) \) be \(p_n(0)(n) \). Then for each \(i \leq m + 1 \),
\[p_t = \langle p_n(0), \bigcap_{[1, \omega_2]} \rangle \vdash \forall t \in k_n, \tau(i) = f(i). \]

Therefore, \(p_{n+1} \vdash \tau \in [k_n, k_{n+1}] \subseteq F_t \). Hence by applying Lemma 6 of [L] \(m + 2 \) many times we can find \(q \in K_n \) such that \(\bigcup_{n < \omega} K_n = \bigcup_{n < \omega} \text{supp}(p) \) and \(0 \in K_0 \). Having gotten \(p_n \), let \(s = (k_0, \ldots, k_m) \) be \(p_n(0)(n) \). Then for each \(i \leq m + 1 \),
\[p_t = \langle p_n(0), \bigcap_{[1, \omega_2]} \rangle \vdash \forall t \in k_n, \tau(i) = f(i). \]

Therefore, \(p_{n+1} \vdash \tau \in [k_n, k_{n+1}] \subseteq F_t \). Hence by applying Lemma 6 of [L] \(m + 2 \) many times we can find \(q \in K_n \) such that \(\bigcup_{n < \omega} K_n = \bigcup_{n < \omega} \text{supp}(p) \) and \(0 \in K_0 \). Having gotten \(p_n \), let \(s = (k_0, \ldots, k_m) \) be \(p_n(0)(n) \). Then for each \(i \leq m + 1 \),
\[p_t = \langle p_n(0), \bigcap_{[1, \omega_2]} \rangle \vdash \forall t \in k_n, \tau(i) = f(i). \]

Therefore, \(p_{n+1} \vdash \tau \in [k_n, k_{n+1}] \subseteq F_t \). Hence by applying Lemma 6 of [L] \(m + 2 \) many times we can find \(q \in K_n \) such that \(\bigcup_{n < \omega} K_n = \bigcup_{n < \omega} \text{supp}(p) \) and \(0 \in K_0 \). Having gotten \(p_n \), let \(s = (k_0, \ldots, k_m) \) be \(p_n(0)(n) \). Then for each \(i \leq m + 1 \),
\[p_t = \langle p_n(0), \bigcap_{[1, \omega_2]} \rangle \vdash \forall t \in k_n, \tau(i) = f(i). \]
Proof of Theorem 5. Suppose $M[G_{\omega_2}] \models \text{"}U \text{ is a semi-Q-point".}$. Applying an argument of Kunen's we get $\alpha < \omega_2$ such that $U \cap M[G_\alpha] \in M[G_\alpha]$. $(M[G_\beta] \models \text{"}CH\text{" for all } \beta < \omega_2$ so construct using ω_2-c.c., $\alpha_\lambda < \omega_2$ for $\lambda < \omega_1$ so that $\forall x \in M[G_{\alpha_\lambda}] \cap 2^\omega$, $P_{\alpha_{\alpha_\lambda}}$ decides $\text{"}x \in U\text{"}$. Let $\alpha = \text{sup } \alpha_\lambda$. Note $M[G_\alpha] \cap 2^\omega = \bigcup_{\beta < \alpha} M[G_\beta] \cap 2^\omega$ since κ_1 is not collapsed.) By [L, Lemma 11] we may assume $U \cap M \in M$. But Lemma 2 clearly implies that for any $V \text{ ult. in } M$, $M[G_{\omega_2}] \models \text{"}no extension of } V \text{ is a semi-Q-point.}\text{"} \square$

Remarks. (1) A similar argument shows that in the model gotten by ω_2 iteration of Mathias forcing with countable support there are no semi-Q-points. In fact, as Mathias later pointed out to me, the appropriate argument needed is an easy generalization of Theorem 6.9 of [M2].

(2) In [M1] Mathias shows $[\omega \rightarrow (\omega)^\omega] \Rightarrow \text{[There are no rare filters or nonprincipal ultrafilters.]}$

(3) In neither the Laver or Mathias models are there small dominant families so by Ketenen [Ke] there is a P-point. Also it is easily shown no ultrafilter is generated by fewer then κ_2 sets.

(4) Not long after the results of this paper were obtained, Shelah showed that it is consistent that no P-points exist [W]. In his model there is a dominant family of size κ_1, so there are Q-points. It remains open whether or not it is consistent that there are no P-points or Q-points.

Conjecture. Borel conjecture \iff there does not exist a semi-Q-point.

References

Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706