COMPACTIFICATIONS WITH COUNTABLE REMAINDER

M. G. CHARALAMBOUS

Abstract. In this paper, we deal with the problem of characterizing those spaces that have a compactification with countable remainder.

1. Introduction and definitions. A collection \mathcal{A} of subsets of a topological space X is called a network if every open subset of X is the union of a subcollection of \mathcal{A}. $R(X)$ denotes the set of all points of X which possess no compact neighbourhood. If Y is a Hausdorff compactification of X, it is readily seen that $R(X)$ is the intersection of X with the closure of $Y - X$ in Y. A Hausdorff compactification Y of X is said to have countable remainder if $Y - X$ is a countable set; by an abuse of terminology, we shall say that such a Y is a countable compactification of X. In what follows, the space X is assumed to be at least Tychonoff. Two necessary conditions for X to have a countable compactification are (a) X is Čech-complete and (b) X is rim-compact. These are, in fact, sufficient conditions as well in the case when X is metric separable [6], [10]. However, the product of the space of irrational numbers with an uncountable discrete space, despite satisfying both (a) and (b), possesses no countable compactification [4]. There has recently been interest in finding conditions which, together with (a) and (b), ensure that X has a countable compactification ([2], [3], [4], [8]). Terada has shown that one such condition is that $R(X)$ is compact metric, and Hoshina has weakened this to the requirement that $R(X)$ is metric separable. In this paper, we show that (a) and (b), together with the condition that $R(X)$ has a countable network, ensure that X has a countable compactification. This includes Hoshina's result as well as the case when $R(X)$ is countable. In addition, our proof is considerably shorter than the one given by Hoshina. Furthermore, we construct examples to show that, in general, the topological properties of $R(X)$ do not determine whether X has a countable compactification.

2. A result.

Theorem. Let X be a Čech-complete, rim-compact space such that $R(X)$ has a countable network. Then X has a countable compactification.

Proof. Since X is rim-compact, X has at least one compactification Z with $\text{ind}(Z - X) < 0$, where ind denotes small inductive dimension, and since X...
is Čech-complete, \(Z - X = \bigcup_{n=1}^{\infty} F_n \), where for each \(n \) in \(N \), the set of positive integers, \(F_n \) is compact [5]. Let \(\{A_n: n \in N\} \) be a network for \(R(X) \). For a fixed \(n \) in \(N \), let \(M = \{m \in N: \overline{A_m} \cap F_n = \emptyset\} \). If \(x \) is a point of \(R(X) \), by regularity of \(Z \), there is an open set \(V \) of \(Z \) and some \(m \) in \(M \) with \(x \in A_m \subseteq V \subseteq \overline{V} \subseteq Z - F_n \). For each \(m \) in \(M \), by normality of \(Z \), there is a cozero set \(G_m \) of \(Z \) with \(A_m \subseteq G_m \subseteq Z - F_n \). Put

\[
E_n = Z - \bigcup_{m \in M} G_m \cup (X - R(X)).
\]

It is readily seen that \(E_n \) is a compact subset of \(Z - X \) such that \(F_n \subseteq E_n \), \(Z - X = \bigcup_{n=1}^{\infty} E_n \) and the complement of \(E_n \) in any compact subset of \(Z - X = (Z - X) \cup R(X) \) is \(\sigma \)-compact. We may further assume that \(E_n \subseteq E_{n+1} \) for each \(n \) in \(N \). Now \(E_{n+1} - E_n \) is a locally compact, \(\sigma \)-compact space with \(\text{ind}(E_{n+1} - E_n) < 0 \). Hence \(E_{n+1} - E_n \) is the union of a countable collection of mutually disjoint compact sets. It follows that \(Z - X = \bigcup_{n=1}^{\infty} B_n \), where, for \(n, m \) in \(N \) with \(n \neq m \), \(B_n \) and \(B_m \) are disjoint compact sets, and \((Z - X \cup B_n) \cup R(X) = \bigcup_{m,n} C_{n,m} \), where \(C_{n,m} \) is compact for all \(n, m \) in \(N \).

Since \(Z - X \) is Lindelöf and \(\text{ind}(Z - X) < 0 \), then \(\text{dim}(Z - X) < 0 \), where \(\text{dim} \) denotes covering dimension. Hence, if \(E, F \) are disjoint closed sets of \(Z \), there exist disjoint open sets \(G, H \) with \(E \subseteq G, F \subseteq H \) and \(Z - X \subseteq G \cup H \) (see e.g. [1, Proposition 4]). It follows that there are pairs \(G_i, H_i \) of disjoint open sets of \(Z \) with \((Z - X) \subseteq G_i \cup H_i \), \(i \in N \), and such that \(E \subseteq G_i \) and \(F \subseteq H_i \) for some \(i \) in \(N \) in each of the following cases. Firstly when \(E = B_n \) and \(F = C_n \), secondly when \(E = \overline{A_n} \), \(F = \overline{A_m} \) and \(\overline{A_n} \cap \overline{A_m} = \emptyset \), and thirdly when \(E = \overline{A_n} \), \(F = B_m \) and \(\overline{A_n} \cap B_m = \emptyset \), where \(n, m \) are in \(N \).

We now define an equivalence relation \(\sim \) on \(Z \) as follows. If \(x, y \in B_n \) for some \(n \) in \(N \), then \(x \sim y \) if and only if \(x \) and \(y \) belong to the same member of \(\{G_i, H_i\} \) for each \(i < n \). Otherwise, \(x \sim y \) if and only if \(x = y \). Let \(\pi: Z \to Y \) be the quotient map induced by \(\sim \). The equivalence class \(\pi^{-1}(x) \) of a point \(x \) of \(B_n \) is the closed set \(D_1 \cap \cdots \cap D_n \cap B_n \), where, for \(i < n \), \(D_i \) is the member of \(\{G_i, H_i\} \) which contains \(x \). Hence \(\pi(B_n) \) consists of a finite number of points. Clearly, \(Y \) is a \(T_1 \) compactification of \(X \) with \(Y - X \) countable. To complete the proof, it suffices to show that \(\pi \) is a closed map, since this implies that \(Y \) is normal and therefore Hausdorff.

Let \(S \) be a closed set of \(Z \). Then \(\pi^{-1}(S) = S \cup T \), where \(T = \bigcup_{n=1}^{\infty} T_n \) and \(T_n = \pi^{-1}(S \cap B_n) - S \). Let \(x \) be a limit point of \(T \). It suffices to show that \(x \in S \cup T \), since this implies that \(\pi^{-1}(S) \) is closed and hence \(\pi \) is closed. Since \(T \) is a subset of the closed set \((Z - X) \cup R(X) \), either \(x \in R(X) \) or, for some \(n \) in \(N \), \(x \in B_n \). We note that, for \(m, k \) in \(N \), since \(\pi(B_m) \) is finite, then \(\pi^{-1}(S \cap B_m) \) is closed, so that if \(x \) is not in \(\bigcup_{m<k} \pi^{-1}(S \cap B_m) \), then \(x \) is a limit point of \(\bigcup_{m>k} T_m \).

We first assume that \(x \in R(X) \). Let \(K = \{k \in N: x \in G_k \cup H_k\} \). For \(k \) in
COMPACTIFICATIONS WITH COUNTABLE REMAINDER

K, write D_k for the element of $\{G_k, H_k\}$ which contains x. Now x is a limit point of $\bigcup_{m \geq k} T_m$ and hence there is an element x_k of this set which is contained in $\cap (D_i: i \in K, i < k)$. Let y_k be an element of S with $y_k \sim x_k$. Then, for $i < k$, $y_k \in H_i$ implies $x_k \in H_i$. The infinite subset $\{y_1, y_2, \ldots\}$ of the compact set S has a limit point y in S. Suppose $y \neq x$. Either $y \in R(X)$ or $y \in B_n$ for some n in N. In the first case, there are open neighbourhoods U, V of x with $\overline{U} \cap \overline{V} = \emptyset$ and m, n in N with $x \in A_m \subset U$ and $y \in A_n \subset V$. Clearly $\overline{A}_m \cap \overline{A}_n = \emptyset$ and hence there is r in N with $\overline{A}_m \subset G_r$ and $\overline{A}_n \subset H_r$. In the second case, let U be a neighbourhood of x with $\overline{U} \cap B_n = \emptyset$ and let m be in N with $x \in A_m \subset U$. Since $\overline{A}_m \cap B_n = \emptyset$, there is an r in N with $\overline{A}_m \subset G_r$ and $B_n \subset H_r$. Now since y is a limit point of $\{y_1, y_2, \ldots\}$, for some $k > r$, $y_k \in H_r$, which implies that $x_k \in H_r$, so that, since $G_r \cap H_r = \emptyset$, $x_k \in G_r = D_r$. This contradicts the fact that x_k is in $\cap (D_i: i \in K, i < k)$ and shows that $x = y$ and hence $x \in S$.

Finally, suppose $x \in B_n$ for some $n \in N$. It remains to show that $x \in \pi^{-1}\pi(S \cap B_n)$. Suppose this is false. For $i \in N$, let D_i be the member of $\{G_i, H_i\}$ which contains x. Then $\pi^{-1}\pi(x) = D_1 \cap \ldots \cap D_n \cap B_n$ and $S \cap D_1 \cap \ldots \cap D_n \cap B_n = \emptyset$. The closure Q of $(S - X) \cup D_1 \cap \ldots \cap D_n$ is a compact subset of $(Z - X) \cup R(X)$ which is disjoint from B_n. For if $y \in B_n \cap Q$, then $y \in B_n \cap S$, so that for some $j < n$, $y \in D_j$, and if P_j is the member of $\{G_j, H_j\}$ which contains y, then $P_j \cap Q = \emptyset$. Thus Q is a compact subspace of $\bigcup_{k=1}^{\infty} C_n \cap k$. Hence there is a finite subset L of N such that $B_n \subset G_i$ for each $i \in L$ and $Q \subset \bigcup (H_i: i \in L)$. Let $k = n + \max L$ and $D = D_1 \cap \ldots \cap D_k$. Since $x \in B_n$, for $i \in L$, $D_i = G_i$. Let $m > k$ and suppose $y \in D \cap T_m$. Then there is z in $S \cap B_m$ with $y \sim z$. For $i < k$, y and z belong to the same element of $\{G_i, H_i\}$. Hence $z \in D$ and it follows that $z \in Q$. Therefore for some i in L, $z \in H_i$, which is absurd since $G_i \cap H_i = \emptyset$ and $z \in D \subset D_i = G_i$.

This shows that x is not a limit point of $\bigcup_{m \geq k} T_m$ and since our assumption that $x \in B_n$ and $x \notin \pi^{-1}\pi(S \cap B_n)$ implies that x is not in $\bigcup_{m \leq k} \pi^{-1}\pi(S \cap B_m)$, then x is not a limit point of T. This contradiction shows that x must be in $\pi^{-1}\pi(S \cap B_n)$ and completes the proof of the theorem.

3. Some examples. Example 1 shows that there are rim-compact, Čech-complete spaces X, X_1, such that, despite $R(X), R(X_1)$ being homeomorphic, X has a countable compactification but not X_1. In this example, $R(X)$ is compact. In Example 2, the same pathology is exhibited with $R(X)$ discrete. Hoshina [4] has shown that if a paracompact space X has a countable compactification, then $R(X)$ is Lindelöf. Example 2 shows that, in general, the fact that X has a countable compactification does not imply that $R(X)$ is Lindelöf.

We need the following result of Hoshina [4].

Lemma. If X has a countable compactification and \mathcal{U} is a collection of mutually disjoint open sets of X with $U \cap R(X) \neq \emptyset$ for each U in \mathcal{U}, then \mathcal{U} is countable.
Example 1. Let R be the set of real numbers with the usual topology. Then $X = \beta R - N$, where β denotes Stone-Cech compactification, has a countable compactification and $R(X) = \beta N - N$ [8, Example 3].

Let $N \cup \{\infty\}$ be the one-point compactification of N, $Y = (N \cup \{\infty\}) \times (N \cup \{\infty\}) \times R(X)$ and $X_1 = Y - \{\infty\} \times N \times R(X)$. Since Y is compact and $Y - X_1$ is σ-compact and zero-dimensional, then X_1 is Čech-complete and rim-compact. In addition, $R(X_1) = \{\infty\} \times \{\infty\} \times R(X)$ is homeomorphic with $R(X)$. Let \mathcal{U} be an uncountable collection of mutually disjoint nonempty open sets of $\beta N - N$ [9, p. 77]. For each U in \mathcal{U}, let $U^* = (N \cup \{\infty\}) \times (N \cup \{\infty\}) \times U$. Then $\{U^* \cap X_1 : U \in \mathcal{U}\}$ is an uncountable collection of mutually disjoint open sets of X_1 with $U^* \cap X_1 \cap R(X_1) \neq \emptyset$ for each U in \mathcal{U}. The lemma implies that X_1 has no countable compactification.

Example 2. Let P be the set of irrational numbers and Q the set of rational numbers. For each x in P, let $\{x_1, x_2, \ldots\}$ be a sequence of rationals converging to x in the usual topology of R. A subset A of R is defined to be open if whenever $x \in A \cap P$, then there is n in N with $\{x_n, x_{n+1}, \ldots\} \subset A$. With this topology, R is locally compact and Hausdorff, Q is dense in R and P is a closed subspace of R with discrete topology [7, p. 87]. Let $R \cup \{\infty\}$ be the one-point compactification of R, $Y = (N \cup \{\infty\}) \times (R \cup \{\infty\})$ and $X = Y - \{\infty\} \times Q \cup \{\infty\}$. Then Y is a countable compactification of X_1, while $R(X) = \{\infty\} \times P$ is not Lindelöf.

Let $Z = (N \cup \{\infty\}) \times Y$ and $X_1 = (Z - \{\infty\} \times Y) \cup \{\infty\} \times \{\infty\} \times P$. Then X_1 is Čech-complete and rim-compact, because $Z - X_1$ is σ-compact and zero-dimensional, and $R(X_1) = \{\infty\} \times \{\infty\} \times P$ is homeomorphic with $R(X)$. However, the lemma implies that the closed subspace $N \times (N \cup \{\infty\}) \times (P \cup \{\infty\}) \cup R(X_1)$ of X_1 has no countable compactification, and hence X_1 has no countable compactification.

We can obviously choose X, X_1 so that $R(X), R(X_1)$ are homeomorphic with the one-point compactification of P.

Bibliography

4. ________, Countable-points compactifications for metric spaces, preprint.

Department of Mathematics, Ahmadu Bello University, Zaria, Nigeria

Current address: Department of Mathematics, University of Nairobi, P. O. Box 30917, Nairobi, Kenya