Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Compactifications with countable remainder


Author: M. G. Charalambous
Journal: Proc. Amer. Math. Soc. 78 (1980), 127-131
MSC: Primary 54D40; Secondary 54D35
MathSciNet review: 548099
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we deal with the problem of characterizing those spaces that have a compactification with countable remainder.


References [Enhancements On Off] (What's this?)

  • [1] M. G. Charalambous, Spaces with increment of dimension 𝑛, Fund. Math. 93 (1976), no. 2, 97–107. MR 0433411
  • [2] Melvin Henriksen, Tychonoff spaces that have a compactification with countable remainder, General topology and its relations to modern analysis and algebra, IV (Proc. Fourth Prague Topological Sympos., Prague, 1976) Soc. Czech. Mathematicians and Physicists, Prague, 1977, pp. 164–167. MR 0454922
  • [3] T. Hoshina, Compactifications by adding a countable number of points, General topology and its relations to modern analysis and algebra, IV (Proc. Fourth Prague Topological Sympos., Prague, 1976) Soc. Cezechoslovak Mathematicians and Physicists, Prague, 1977, pp. 168–169. MR 0461446
  • [4] -, Countable-points compactifications for metric spaces, preprint.
  • [5] J. R. Isbell, Uniform spaces, Mathematical Surveys, No. 12, American Mathematical Society, Providence, R.I., 1964. MR 0170323
  • [6] Kiiti Morita, On bicompactifications of semibicompact spaces, Sci. Rep. Tokyo Bunrika Daigaku. Sect. A. 4 (1952), 222–229. MR 0052089
  • [7] Lynn A. Steen and J. Arthur Seebach Jr., Counterexamples in topology, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1970. MR 0266131
  • [8] Toshiji Terada, On countable discrete compactifications, General Topology and Appl. 7 (1977), no. 3, 321–327. MR 0500840
  • [9] Russell C. Walker, The Stone-Čech compactification, Springer-Verlag, New York-Berlin, 1974. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 83. MR 0380698
  • [10] Leo Zippin, On Semicompact Spaces, Amer. J. Math. 57 (1935), no. 2, 327–341. MR 1507076, 10.2307/2371210

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54D40, 54D35

Retrieve articles in all journals with MSC: 54D40, 54D35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1980-0548099-3
Keywords: Rim-compact, Cech-complete, network, countable compactification, small inductive dimension, covering dimension
Article copyright: © Copyright 1980 American Mathematical Society