Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An application of the Moore-Penrose inverse to antisymmetric relations


Author: Robert E. Hartwig
Journal: Proc. Amer. Math. Soc. 78 (1980), 181-186
MSC: Primary 16A28; Secondary 15A09
DOI: https://doi.org/10.1090/S0002-9939-1980-0550489-X
MathSciNet review: 550489
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let R be a star-ring and let $ {R_\dagger }$ denote the set of star-regular elements in R. It is shown that the relation $ a\Delta b$, defined by $ a{a^\ast}a = a{b^\ast}a$, is antisymmetric on $ {R_\dagger }$ provided that the two-term star-cancellation law and the positive-semidefinite axiom hold in R. This includes the star-regular elements of all $ {C^\ast}$-algebras, and in particular those elements in $ {{\mathbf{C}}_{n \times n}}$ and $ B(H)$, the bounded linear transformations on Hilbert space H.


References [Enhancements On Off] (What's this?)

  • [1] A. Ben Israel and T. N. E. Greville, Generalized inverses, theory and applications, Wiley, New York, 1974. MR 0396607 (53:469)
  • [2] S. K. Berberian, Baer star-rings, Springer-Verlag, Berlin and New York, 1972. MR 0429975 (55:2983)
  • [3] M. P. Drazin, Natural structures on rings and semigroups with involution (submitted for publication).
  • [4] -, Pseudo inverses in associate rings and semigroups, Amer. Math. Monthly 65 (1958), 506-514. MR 0098762 (20:5217)
  • [5] I. Erdelyi, On the matrix equation $ Ax = \lambda Bx$, J. Math. Anal. Appl. 17 (1967), 119-132. MR 0202734 (34:2594)
  • [6] R. E. Hartwig, Block generalized inverses, Arch. Rational Mech. Anal. 61 (1976), 197-251. MR 0399124 (53:2975)
  • [7] I. Kaplansky, Rings of operators, Benjamin, New York, 1968. MR 0244778 (39:6092)
  • [8] C. D. Rao, S. K. Mitra and P. Bhimasankaram, Determination of a matrix by its subclasses of generalized inverses, Sankhyā Ser. A 34 (1972), 5-8. MR 0340272 (49:5027)
  • [9] N. S. Urquhart, Computation of generalized inverse matrices which satisfy specified conditions, SIAM Rev. 10 (1968), 216-218. MR 0227186 (37:2771)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A28, 15A09

Retrieve articles in all journals with MSC: 16A28, 15A09


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1980-0550489-X
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society