ON \(p \)-TORSION IN ÉTALE COHOMOLOGY
AND IN THE BRAUER GROUP

ROBERT TREGER

Abstract. If \(X \) is an affine scheme in characteristic \(p > 0 \), then
\[\text{Br}(X)(p) \simeq H^2_{\text{ét}}(X, \mathbb{G}_m)(p) \text{ and } H^n_{\text{ét}}(X, \mathbb{G}_m)(p) = 0 \text{ for } n > 3.\] This gives a partial answer to the conjecture that the Brauer group of any scheme \(X \) is canonically isomorphic to the torsion part of \(H^2_{\text{ét}}(X, \mathbb{G}_m) \). This result is then applied to prove that \(\text{Br}(R)(p) \) is \(p \)-divisible where \(R \) is a commutative ring of characteristic \(p > 0 \)
(theorem of Knus, Ojanguren and Saltman), and also to construct examples of domains \(R \) of characteristic \(p > 0 \) with large \(\text{Ker}(\text{Br}(R)(p) \to \text{Br}(Q)(p)) \), where \(Q \) is the ring of fractions of \(R \).

The main result of this note (Theorem) is a partial answer to the following well-known

Conjecture [4, II, 2]. The Brauer group of any scheme \(X \) is canonically isomorphic to the torsion part of the second étale cohomology group of \(X \) with coefficients in the sheaf of units \(\mathbb{G}_m \), i.e., the image of the inclusion \(\delta: \text{Br}(X) \to H^2_{\text{ét}}(X, \mathbb{G}_m) \) [4, I, Proposition 1.4] coincides with the torsion part of \(H^2_{\text{ét}}(X, \mathbb{G}_m) \).

The results of this note were obtained in Chicago in the fall of 1976 (cf. [9], [10]).

O. Gaber, using a completely different approach,\(^1\) independently proved the following general result: the conjecture is true for \(X = U_1 \cup U_2 \) where \(U_1, U_2 \) are affine schemes. (I hope he will also publish his rather long but very interesting proof.)

1. Theorem. Let \(X = \text{Spec}(R) \) be an affine scheme in characteristic \(p > 0 \). Then
\[\delta: \text{Br}(X)(p) \to H^2_{\text{ét}}(X, \mathbb{G}_m)(p) \text{ and } H^n_{\text{ét}}(X, \mathbb{G}_m)(p) = 0 \text{ for } n > 3.\]

Proof. For any positive integer \(e \) we shall consider an extension of \(R \) of the form
\[K_e = R[\{ x_j \mid j \in J \}]/(\{ x_j^{p^n} - a_j \mid j \in J \}) \]
where \(\{ a_j \mid j \in J \} \) is a possibly infinite set of generators for the \(R^{p^e} \)-algebra \(R \). Each algebra \(K_e = \text{inj lim}_{\gamma \in \Gamma}(K_{\gamma,e}) \), where
\[K_{\gamma,e} = R[x_{\gamma,1}, \ldots, x_{\gamma,\delta}] / (\{ x_{\gamma,i}^{p^\alpha} - a_{\gamma,i} \mid 1 < i < s_{\gamma} \}), \quad a_{\gamma,i} \in \{ a_j \mid j \in J \} \]
and \(\gamma \in \Gamma \), the index set. All \(K_{\gamma,e} \) are free as \(R \)-modules.

Let \(U \) be the functor which associates to any commutative \(R \)-algebra \(S \) its group of units \(U(S) \) [6, V, 1.2]. We denote by \(H^n(S/R, U) \) or \(H^n(S/R) \) the Amitsur

\(^1\)The referee pointed out that Gaber’s proof is a generalization of Hoobler’s proof for smooth affine varieties over a field.
cohomology groups for the functor U \cite{6, V, 1, 2}. It follows immediately from the definition of the Amitsur complex and Berkson’s theorem (see a proof by D. Zelinski in \cite{6, V, 5.1}) that

$$H^n(K_e/R) = H^n(K_{te}/R) = 0 \quad \text{for } n > 3, \quad \gamma \in \Gamma. \quad (1)$$

Let us consider a sequence of ring homomorphisms $R \xrightarrow{\varepsilon} K_e \xrightarrow{p^e} R$, where ε is the natural embedding and p^e is the p^e-power map. Let $Y_{te} = \text{Spec}(K_{te})$ and $Y_e = \text{Spec}(K_e)$. This sequence yields a sequence of homomorphisms of etale cohomology groups:

$$H^n_{\text{et}}(X, G_m) \xrightarrow{\varepsilon} H^n_{\text{et}}(Y_e, G_m) \xrightarrow{p^e} H^n_{\text{et}}(X, G_m). \quad (2)$$

We shall need two general remarks. If $H^n_{\text{et}}(X, G_m)$ are the cohomology groups of X in “fppf” topology \cite{4, III, 5} then there exist canonical isomorphisms $H^n_{\text{et}}(X, G_m) \simeq H^{2n}(X, G_m) \cite{4, III, 11.7}$. Moreover, $\bar{p} \cdot \bar{\varepsilon}$ is the p-power map \cite{6, V, 1}.

Second, for any faithfully flat K_e-algebra B,

$$H^n(B/K_e) = H^n(K_e \otimes_R B / K_e) \quad [8, 4.3].$$

The classical construction of Rosenberg and Zelinsky shows that the natural map $H^2(K_e/R) \to H^2_{\text{et}}(X, G_m)$ factors through $\text{Br}(K_e/R) \ [6, V]$. Consider the spectral sequence for the Amitsur complex \cite{6, V, 4}. Since the homomorphism $\eta: K_e^m \to K_e$ given by $\eta(k_1 \otimes \cdots \otimes k_m) = k_1 \cdots k_m$ has a nilpotent kernel for each $m > 1$, by a theorem of Rosenberg and Zelinsky (\cite{8, 4.1} or \cite{6, V, 4}), the natural sequence

$$H^n(K_e, F_{\omega}/R) \to H^n(F_{\omega}/R) \to H^n(K_e \otimes_R F_{\omega}/K_e) \quad (3)$$

is exact for any etale R-algebra F_{ω} ($\omega \in \Omega$). Obviously, $K_e \otimes_R F_{\omega}$ are etale K_e-algebras. We want to compute $\lim_{\omega \in \Omega} H^n_{\text{et}}(K_e, F_{\omega}/R)$. Consider the second spectral sequence with $K = K_e$, $F = F_{\omega}$. By [8, Lemma 3.1], $"E_1"^{m,n} = 0$ for all $n > 0, m = 0, 1$. Furthermore,

$$"E_1^{3,n} = H^2(K_e \otimes_R F_{\omega}/F_{\omega})$$

and

$$"E_1^{2,n} = H^1(K_e \otimes_R F_{\omega}/F_{\omega}) \to \text{Pic}(K_e \otimes_R F_{\omega}/F_{\omega}).$$

Artin’s theorem \cite{1} implies that $\lim_{\omega \in \Omega} "E_1"^{m,n} = 0$ for $m > 2, n > 0$.

Passing to the limit over the directed family F_{ω} ($\omega \in \Omega$) in (3) and applying a standard result about spectral sequences \cite[XXV, Theorem 5.12]{2}, we get the exact sequence

$$H^n(K_e/R) \xrightarrow{\varepsilon} H^n_{\text{et}}(X, G_m) \xrightarrow{p^e} H^n_{\text{et}}(Y_e, G_m). \quad (4)$$

Let $\xi \in p^eH^2_{\text{et}}(X, G_m)$, i.e. ξ has order p^e in the group $H^2_{\text{et}}(X, G_m)$. Then $p^e \cdot \bar{\varepsilon}(\xi) = 0$ (see (2)) hence, by a well-known lemma \cite{4, III, 11.8}, $\bar{\varepsilon}(\xi) = 0$. Therefore, $\xi \in \text{Im}(\alpha)$. Hence, ξ comes from an Azumaya R-algebra.

If $n > 3$ then, by (1), $H^n(K_e/R) = 0$. Hence $\xi \in p^eH^2_{\text{et}}(X, G_m)$ implies $\xi = 0$. This proves the theorem.
2. We now give an example of a local ring \(R \) of an affine domain over an algebraically closed field with large group \(\text{Br}(Q/R)(p) \overset{\text{def}}{=} \text{Ker}(\text{Br}(R)(p) \rightarrow \text{Br}(Q)(p)) \), where \(Q \) is the quotient field of \(R \).

Let \(k \) be an algebraically closed field of characteristic \(p > 0 \). Let \((R, m)\) be a two-dimensional local normal \(k\)-domain with the quotient field \(Q \) and residue field \(R/m \cong k \). There is a commutative diagram [4, II, 1.7 and (7 bis)]

\[
\begin{array}{ccc}
0 & \rightarrow & \text{Br}(Q/R) & \rightarrow & \text{Br}(R) & \rightarrow & \text{Br}(Q) \\
\tau & \downarrow & \delta & \downarrow & \text{Cl}(R^h)/\text{Cl}(R) & \rightarrow & H^2_{et}(\mathbb{G}_m, \mathcal{O}_R) & \rightarrow & \text{Br}(R) \\
0 & \rightarrow & \text{Cl}(R^h)/\text{Cl}(R) & \rightarrow & H^2_{et}(X, \mathbb{G}_m) & \rightarrow & \text{Br}(R) \\
\end{array}
\]

where \(\tau \) is the restriction of \(\delta \) and \(R^h \) is the henselisation of \(R \). It is well known that \(\text{Cl}(R^h) = \text{Cl}(R) \), where \(\hat{R} \) is the \(m \)-adic completion of \(R \).

Example. Let \(k \) (as above) be of characteristic 2. Let \(A = k[[X, Y, Z]]/(X^2 + Y^2 + Z^2 + 1) \) where \((i, j) \neq (1, 1), (1, 2), (2, 1) \) and \((2i + 1, 2j + 1) = 1 \). Let \(R = A_m \) where \(m = (x, y, z) \subset A \) is an ideal in \(A \) generated by the images of \(X, Y, Z \) in \(A \). Then \(R \) is a factorial domain but \(\text{Cl}(R) = \text{Cl}(A^+) \) where \(A^+ \) is asymptotic to \(ij/2 \), by Samuel [3, IV, 17]. Thus we can make \(\text{Br}(Q/R)(p) \) as large as we wish.

Ojanguren (unpublished) independently constructed examples with nontrivial \(\text{Br}(Q/R) \). M. Artin pointed out to me that one can construct examples in characteristic zero with nontrivial \(\text{Br}(Q/R) \) by contracting some curves on algebraic \(K-3 \) surfaces.

3. Now we present a short functorial proof of the following.

Proposition (Knus-Ojanguren-Saltman; cf. [7]). The Brauer group of any affine scheme \(X \) in characteristic \(p > 0 \) is \(p \)-divisible.

I wish to thank D. Saltman for showing me his proof before it appeared in [7].

Proof. Let \(X = \text{Spec}(R) \) and \(K_1, Y_1 = \text{Spec}(K_1) \) be as in the theorem. There is a standard exact sequence of sheaves on \(X_f_1 \) (see, for instance, [5, 1.4])

\[
0 \rightarrow G_{m, X} \overset{i}{\rightarrow} \varphi^* G_{m, Y_1} \overset{d_{Y_1/X}}{\rightarrow} Z^1_{Y_1/X} \overset{\psi^* \Omega^1_{Y_1/X}}{\rightarrow} 0 \tag{5}
\]

where \(\varphi : Y_1 \rightarrow X \) is the map defined by the inclusion: \(R \rightarrow K_1 \), \(I \) is the formal \(p \)-power map, \(\psi : X \rightarrow Y_1 \) is the map induced by the map \(p : K_1 \rightarrow R \), \(C \) is the Cartier operator, and

\[
Z^1_{Y_1/X} = \text{Ker} \left[\varphi^* d_{Y_1/X} : \varphi^* \Omega^1_{Y_1/X} \rightarrow \varphi^* \Omega^2_{Y_1/X} \right]
\]

is the sheaf of closed 1-forms. Consider the natural commutative diagram

\[
\begin{array}{cccc}
H^2_{f_1}(X, G_{m, X}) & \overset{i}{\rightarrow} & H^2_{f_1}(X, \varphi^* G_{m, Y_1}) & \overset{\psi}{\rightarrow} \\
H^2_{f_1}(X, G_{m, X}) & \overset{\psi}{\rightarrow} & \overset{w}{\rightarrow} & H^2_{f_1}(X, G_{m, X}) \\
\end{array}
\]
where the map F is induced by the absolute Frobenius on X and W is induced by the map p. Since X is affine and $Z_{Y_1/X}$ and $\psi_1^*\Omega_{Y_1/X}$ are quasi-coherent sheaves, $H^2_{et}(X, \ker(C - I)) = 0$. Hence i is surjective. It is trivial that W is surjective. Therefore $F = W \cdot i$ is surjective. Since, by the theorem, $\text{Br}(X)(p) \cong H^1_{et}(X, \mathbb{G}_m(p))$, and $H^2_{et}(X, \mathbb{G}_m)(p) \cong H^2_f(X, \mathbb{G}_m)(p)$ [4, III, 11.7], the Brauer group $\text{Br}(X)$ is p-divisible.

Of course, for general schemes the Brauer group is not p-divisible (cf. [5, §2]).

4. REMARK. Presumably our method can be applied to the investigation of p-torsion in the nonaffine cases (we used that X in the theorem is affine to conclude that $\ker(p^*) = 0$ in (2)). A straightforward generalization of the theorem to curves can be used to prove an old theorem of M. Artin (unpublished): If $f: V' \to V$ is a proper morphism with fibres of dimension 1 and V' regular of dimension 2, then $R^qf_*\mathbb{G}_{m,V'} = 0$ for $q > 2$. Indeed, the vanishing of $(R^qf_*\mathbb{G}_{m,V'})(l)$, where l is any prime number, is proved exactly as the analogous result in [4, III, 3]; see also [11]. The theorem for curves takes care of the case $l = p$, the characteristic of V.

REFERENCES

INSTITUTE OF MATHEMATICS, HEBREW UNIVERSITY, JERUSALEM, ISRAEL

Current address: School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540