Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On $ p$-torsion in etale cohomology and in the Brauer group


Author: Robert Treger
Journal: Proc. Amer. Math. Soc. 78 (1980), 189-192
MSC: Primary 14F20; Secondary 16A16
DOI: https://doi.org/10.1090/S0002-9939-1980-0550491-8
MathSciNet review: 550491
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If X is an affine scheme in characteristic $ p > 0$, then $ {\text{Br}}(X)(p)\tilde \to H_{{\text{et}}}^2(X,{{\mathbf{G}}_m})(p)$ and $ H_{{\text{et}}}^n(X,{{\mathbf{G}}_m})(p) = 0$ for $ n \geqslant 3$. This gives a partial answer to the conjecture that the Brauer group of any scheme X is canonically isomorphic to the torsion part of $ H_{{\text{et}}}^2(X,{{\mathbf{G}}_m})$. This result is then applied to prove that $ {\text{Br}}(R)(p)$ is p-divisible where R is a commutative ring of characteristic $ p > 0$ (theorem of Knus, Ojanguren and Saltman), and also to construct examples of domains R of characteristic $ p > 0$ with large $ {\operatorname{Ker}}({\text{Br}}(R)(p) \to {\text{Br}}(Q)(p))$, where Q is the ring of fractions of R.


References [Enhancements On Off] (What's this?)

  • [1] M. Artin, On the joins of Hensel rings, Advances in Math. 7 (1971), 282-286. MR 0289501 (44:6690)
  • [2] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956. MR 0077480 (17:1040e)
  • [3] R. M. Fossum, The divisor class group of a Krull domain, Ergebnisse der Math. und ihrer Grenzgebiete, Bd. 74, Springer-Verlag, Berlin and New York, 1973. MR 0382254 (52:3139)
  • [4] A. Grothendieck, Le groupe de Brauer. I, II, III. Dix exposés sur la cohomologie des schèmes, Advanced Studies in Pure Math., vol. 3, North-Holland, Amsterdam, 1976, pp. 46-188. MR 0244269 (39:5586a)
  • [5] R. Hoobler, Cohomology of purely inseparable Galois covering, J. Reine Angew. Math. 266 (1974), 183-199. MR 0364258 (51:513)
  • [6] M.-A. Knus and M. Ojanguren, Théorie de la descente et algèbres d'Azumaya, Lecture Notes in Math., vol. 389, Springer-Verlag, Berlin and New York, 1974. MR 0417149 (54:5209)
  • [7] M.-A. Knus, M. Ojanguren and D. Saltman, On Brauer group in characteristic p, Brauer Groups (Proc. Conf., Evanston, 1975), Lecture Notes in Math., vol. 549, Springer-Verlag, Berlin and New York, 1976, pp. 25-49. MR 0429859 (55:2869)
  • [8] A. Rosenberg and D. Zelinsky, Amitsur's complex for inseparable fields, Osaka Math. J. 14 (1962), 219-240. MR 0142604 (26:173)
  • [9] R. Treger, On p-torsion in etale cohomology, Notices Amer. Math. Soc. 24 (1977), A-6, Abstract #77T-A24.
  • [10] -, On $ {\text{Br}}(X)(p)$, 1976 (unpublished manuscript).
  • [11] -, Reflexive modules, Thesis, University of Chicago, 1976.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 14F20, 16A16

Retrieve articles in all journals with MSC: 14F20, 16A16


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1980-0550491-8
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society