Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Equality of essential spectra of certain quasisimilar seminormal operators


Author: L. R. Williams
Journal: Proc. Amer. Math. Soc. 78 (1980), 203-209
MSC: Primary 47B20; Secondary 47A10, 47A65
DOI: https://doi.org/10.1090/S0002-9939-1980-0550494-3
MathSciNet review: 550494
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let A and B be quasisimilar seminormal operators on a separable, infinite dimensional complex Hilbert space. Several conditions which imply that A and B have equal essential spectra are presented. For example, if A and B are both biquasitriangular then A and B have equal essential spectra.


References [Enhancements On Off] (What's this?)

  • [1] C. Apostol, C. Foias and D. Voiculescu, Some results on non-quasitriangular operators. IV, Rev. Roumaine Math. Pures Appl. 18 (1973), 487-514.
  • [2] S. Clary, Equality of spectra of quasisimilar hyponormal operators, Proc. Amer. Math. Soc. 53 (1975), 88-90. MR 0390824 (52:11647)
  • [3] R. G. Douglas, On the operator equation $ {S^\ast}XT = X$ and related topics, Acta Sci. Math. (Szeged) 30 (1969), 19-32. MR 0250106 (40:3347)
  • [4] R. G. Douglas and C. Pearcy, Invariant subspaces of non-quasitriangular operators, Proc. Conf. on Operator Theory, Lecture Notes in Math., no. 345, Springer-Verlag, Berlin and New York, 1973, pp. 13-57. MR 0358391 (50:10857)
  • [5] -, A note on quasitriangular operators, Duke Math. J. 37 (1970), 177-188. MR 0257790 (41:2439)
  • [6] L. A. Fialkow, A note on quasisimilarity of operators, Acta Sci. Math. (Szeged) 39 (1977), 67-85. MR 0445319 (56:3661)
  • [7] C. Foias, C. Pearcy and D. Voiculescu, The staircase representation of biquasitriangular operators, Michigan Math. J. 22 (1976), 343-352. MR 0405146 (53:8941)
  • [8] T. B. Hoover, Quasisimilarity of operators, Illinois J. Math. 16 (1972), 678-686. MR 0312304 (47:866)
  • [9] A. Lambert, Strictly cyclic operator algebras, Ph.D. Thesis, University of Michigan, 1970. MR 0310664 (46:9762)
  • [10] M. Radjabalipour, On majorization and normality of operators, Proc. Amer. Math. Soc. 62 (1977), 105-110. MR 0430851 (55:3856)
  • [11] H. Radjavi and P. Rosenthal, On roots of normal operators, J. Math. Anal. Appl. 34 (1971), 653-664. MR 0278097 (43:3829)
  • [12] W. C. Ridge, Approximate point spectrum of a weighted shift, Trans. Amer. Math. Soc. 147 (1970), 349-356. MR 0254635 (40:7843)
  • [13] A. Shields, Weighted shift operators and analytic function theory, Topics in Operator Theory, Math. Surveys, no.13, Amer. Math. Soc., Providence, R.I., 1974, 49-128. MR 0361899 (50:14341)
  • [14] J. G. Stampfli and B. L. Wadhwa, An asymmetric Putnam-Fuglede theorem for dominant operators, Indiana Univ. Math. J. 26 (1976), 359-365. MR 0410448 (53:14197)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B20, 47A10, 47A65

Retrieve articles in all journals with MSC: 47B20, 47A10, 47A65


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1980-0550494-3
Keywords: Hyponormal operator, cohyponormal operator, seminormal operator, quasiaffinity, quasisimilar, essential spectrum
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society