Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A Volterra equation with square integrable solution


Author: Olof J. Staffans
Journal: Proc. Amer. Math. Soc. 78 (1980), 213-217
MSC: Primary 45D05; Secondary 45G10, 45J05
DOI: https://doi.org/10.1090/S0002-9939-1980-0550496-7
MathSciNet review: 550496
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the asymptotic behavior of the solutions of the nonlinear Volterra integrodifferential equation

$\displaystyle x'(t) + \int_0^t {a(t - s)g(x(s))\;ds\; = f(t)\quad (t \in {R^ + }).} $

Here $ {R^ + } = [0,\infty ),a,g$ and f are given real functions, and x is the unknown solution. In particular, we give sufficient conditions which imply that x and x' are square integrable.

References [Enhancements On Off] (What's this?)

  • [1] R. C. MacCamy, An integro-differential equation with application in heat flow, Quart. Appl. Math. 35 (1977), 1-19. MR 0452184 (56:10465)
  • [2] -, A model for one-dimensional, nonlinear viscoelasticity, Quart. Appl. Math. 35 (1977), 21-33. MR 0478939 (57:18395)
  • [3] J. A. Nohel and D. F. Shea, Frequency domain methods for Volterra equations, Advances in Math. 22 (1976), 278-304. MR 0500024 (58:17748)
  • [4] O. J. Staffans, Positive definite measures with applications to a Volterra equation, Trans. Amer. Math. Soc. 218 (1976), 219-237. MR 0458086 (56:16289)
  • [5] -, An inequality for positive definite Volterra kernels, Proc. Amer. Math. Soc. 58 (1976), 205-210. MR 0500049 (58:17761)
  • [6] -, On the asymptotic spectra of the bounded solutions of a nonlinear Volterra equation, J. Differential Equations 24 (1977), 365-382. MR 0463855 (57:3794)
  • [7] -, Boundedness and asymptotic behavior of solutions of a Volterra equation, Michigan Math. J. 24 (1977), 77-95. MR 0463861 (57:3800)
  • [8] -, A nonlinear Volterra integral equation with square integrable solutions, Volterra Equations, S.-O. Londen and O. J. Staffans, Eds., Lecture Notes in Math., vol. 737, Springer-Verlag, Berlin, 1979, pp. 281-286. MR 551047 (81d:45005)
  • [9] -, A nonlinear Volterra equation with rapidly decaying solutions, Trans. Amer. Math. Soc. (to appear). MR 558188 (81b:45023)
  • [10] -, On a nonlinear hyperbolic Volterra equation, SIAM J. Math. Anal. (to appear). MR 586908 (81j:45018)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 45D05, 45G10, 45J05

Retrieve articles in all journals with MSC: 45D05, 45G10, 45J05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1980-0550496-7
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society