l^∞/c_0 HAS NO EQUIVALENT STRICTLY CONVEX NORM

J. BOURGAIN

Abstract. It is shown that the quotient space l^∞/c_0 does not admit an equivalent strictly convex norm.

Introduction. We say that a normed space X, $||\ ||$ is strictly convex provided $||x + y|| < 2$ whenever $||x|| = ||y|| = 1$ and $x \neq y$. This means also that any member x^* in the dual X^* of X ($x^* \neq 0$) attains its norm in at most one point of the unit ball of X. A space is called strictly convexifiable if there exists an equivalent strictly convex norm on the space.

It is known that $l^\infty = l^\infty(N)$ is strictly convexifiable (cf. [1], [2]). However the purpose of this note is to prove that the quotient l^∞/c_0 fails this property, a problem raised independently by J. J. Schäffer and J. Diestel [3].

We will denote infinite subsets of the integers N by letters L, M, N, P. If L is an infinite subset of N, let $P_N(L)$ be the set of all infinite subsets of L. Our proof is based on the following elementary result.

Lemma. Suppose $x^* \in (l^\infty)^*$, $L \in P_\infty(N)$ and $\epsilon > 0$. Then there is some $M \in P_N(L)$ such that $|x^*(x)| < \epsilon$ whenever $x \in l^\infty$, $||x|| = 1$ and $x_n = 0$ if $n \notin M$.

Proof. We may, of course, assume $||x^*|| = 1$. Take an integer $d > \epsilon^{-1}$ and disjoint members $M_i (1 < i < d)$ of $P_N(L)$.

If each M_i fails the property, then we find elements $x^{(i)} (1 < i < d)$ in l^∞, so that:

1. $||x^{(i)}|| = 1$,
2. $x^{(i)}_n = 0$ if $n \notin M_i$, and
3. $x^*(x^{(i)}) > \epsilon$.

Consider now the vector $x = x^{(1)} + x^{(2)} + \cdots + x^{(d)}$. Obviously $||x|| = 1$ and $x^*(x) > d$. This is the required contradiction.

We are now ready to prove the following theorem.

Theorem. Let $||\ ||$ be an equivalent norm on l^∞/c_0. Then $||\ ||$ is not strictly convex.

Proof. Let $Y = l^\infty/c_0$, $||\ ||$ and $\pi: l^\infty \to Y$ the quotient map be given. Let (ϵ_i) be a sequence of positive numbers converging to 0. We make the following construction: Take $F_1 = \{x \in l^\infty; ||x|| < 1\}$ and $s_1 = \sup\{||\pi(x)||; x \in F_1\}$. Let $x^{(1)} \in F_1$ be such that $||\pi(x^{(1)})|| > s_1 - \epsilon_1$ and

Received by the editors December 21, 1978.

AMS (MOS) subject classifications (1970). Primary 46B05.

© 1980 American Mathematical Society

0002-9939/80/0000-0065/$01.50

225
consider \(y_1^* \in Y^* \), \(\| y_1^* \| = 1 \) with \(y_1^* \pi(x^{(1)}) > s_1 - \epsilon_1 \).

Since \(\pi^*(y_1^*) \in (l^\infty)^* \), application of the lemma provides \(L_1 \in P_\infty(N) \) such that \(|y_1^* \pi(x)| < \epsilon_1 \) if \(x \in l^\infty \), \(x < 1 \) and \(x_n = 0 \) for \(x \not\in L_1 \). Take \(F_2 = \{ x \in F_1; x_n = x_n^{(1)} \text{ for } n \not\in L_1 \} \) and \(s_2 = \sup\{ \|\pi(x)\|; x \in F_2 \} \). Let \(x^{(2)} \in F_2 \) be such that \(\|\pi(x^{(2)})\| > s_2 - \epsilon_2 \) and consider \(y_2^* \in Y^* \), \(\| y_2^* \| = 1 \) with \(y_2^* \pi(x^{(2)}) > s_2 - \epsilon_2 \). Again by the lemma, we get \(L_2 \in P_\infty(L_1) \) such that \(|y_2^* \pi(x)| < \epsilon_2 \) for \(x \in l^\infty \), \(x < 1 \) and \(x_n = 0 \) if \(n \not\in L_2 \).

In general \(F_{i+1} = \{ x \in F_i; x_n = x_n^{(i)} \text{ for } n \not\in L_i \} \) and \(s_{i+1} = \sup\{ \|\pi(x)\|; x \in F_{i+1} \} \). Let \(x^{(i+1)} \in F_{i+1} \) satisfy \(\|\pi(x^{(i+1)})\| > s_{i+1} - \epsilon_{i+1} \) and take \(y_{i+1}^* \in Y^* \), \(\| y_{i+1}^* \| = 1 \) with \(y_{i+1}^* \pi(x^{(i+1)}) > s_{i+1} - \epsilon_{i+1} \). By the lemma, there is some \(L_{i+1} \in P_\infty(L_i) \) so that \(|y_{i+1}^* \pi(x)| < \epsilon_{i+1} \) if \(x \in l^\infty \), \(x < 1 \) and \(x_n = 0 \) for \(n \not\in L_{i+1} \).

Since for \(x \in F_{i+1} \) we have \(\|x - x^{(i)}\| < 2 \) and \(x_n - x_n^{(i)} = 0 \) for \(n \not\in L_i \), it follows that \(|y_i^* \pi(x - x^{(i)})| < 2\epsilon_i \) and thus \(y_i^* \pi(x) > y_i^* \pi(x^{(i)}) - 2\epsilon_i > s_i - 3\epsilon_i \).

Clearly \((F_i) \) is a decreasing sequence of nonvoid \(o(l^\infty, l^1) \) compact subsets of \(l^\infty \). Also \((s_i) \) decreases and we let \(s = \lim_{i \to \infty} s_i \). Take some element \(x^{(\infty)} \) in \(\bigcap F_i \) and let \(y^* \) be a \(\omega^* \)-cluster point of \((y_i^*) \). We consider the subset \(S = \bigcap \pi(F_i) \) of \(Y \). For a fixed \(y \in S \), we find \(\|y\| \leq s \).

Since \(y \in \pi(F_{i+1}) \), it follows that \(y_i^*(y) > s_i - 3\epsilon_i \geq s - 3\epsilon_i \) for all \(i \). Consequently \(y^*(y) > s \) and thus \(y^*(y) = s = \|y\| \). We show that \(S \) contains more than one point. In particular, this will imply that \(s > 0 \) and \(\|y^*\| = 1 \). So the proof will be complete. Because \((L_i) \) is decreasing in \(P_\infty(N) \), there is some \(L \in P_\infty(N) \) with \(L \setminus L_i \) finite for all \(i \). Assume \(x \in l^\infty \), \(\|x\| = 1 \) and \(x_n = x_n^{(\infty)} \) for \(n \not\in L \). It is possible to take \(\pi(x) \neq \pi(x^{(\infty)}) \) since \(L \) is infinite. We claim that \(\pi(x) \in S \). To see this, fix some \(i \) and remark that there is \(x' \in l^\infty \), \(\|x'\| = 1 \), \(x'_n = x_n \) for \(n \not\in L \setminus L_i \) and \(x'_n = x_n^{(\infty)} \) for \(n \not\in L_i \) (\(x' \) depends of course on \(i \)). Thus \(x'_n = x_n^{(\infty)} = x_n^{(i)} \) if \(n \not\in L_i \), for all \(j = 1, \ldots, i - 1 \). Now \(x' \in F_i \) and proceeding by induction we see that \(x' \in F_j \) (\(1 < j < i \)). Because \(L \setminus L_i \) is finite, \(\pi(x) = \pi(x') \in \pi(F_i) \). Consequently \(\pi(x) \in \bigcap \pi(F_i) \), which is what must be obtained.

References

3. ________, Private communication.

Department of Mathematics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use