Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A decomposition of a measure space with respect to a multiplication operator


Author: James S. Howland
Journal: Proc. Amer. Math. Soc. 78 (1980), 231-234
MSC: Primary 47B15
DOI: https://doi.org/10.1090/S0002-9939-1980-0550502-X
MathSciNet review: 550502
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let A be a bounded multiplication operator on $ {L_2}(\Omega ,m)$, where $ \Omega $ is a complete separable metric space and m a Borel measure. A set of measure zero can be removed from $ \Omega $ so that the multiplicity function of A is equal to the cardinality of the preimage. In the proof, $ \Omega $ is decomposed into subsets of simple multiplicity.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B15

Retrieve articles in all journals with MSC: 47B15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1980-0550502-X
Keywords: Multiplication operator, spectral multiplicity
Article copyright: © Copyright 1980 American Mathematical Society