SYSTEMS OF PARTIAL DIFFERENTIAL OPERATORS
WITH FUNDAMENTAL SOLUTIONS
SUPPORTED BY A CONE

KIRK E. LANCASTER AND BENT E. PETERSEN

ABSTRACT. Necessary and sufficient conditions are given for a system of partial differential operators to have a fundamental solution supported by a convex salient cone. As a simple application an overdetermined Cauchy problem is solved.

If \(A \) is a subset of \(\mathbb{R}^n \) and \(\mathcal{F} \) is a space of distributions on \(\mathbb{R}^n \) we denote by \(\mathcal{F}_A \) the space of distributions in \(\mathcal{F} \) which have supports contained in \(A \). We denote by \(\mathcal{D}' \) the space of all distributions on \(\mathbb{R}^n \), by \(\mathcal{S}' \) the space of temperate distributions, and by \(\mathcal{S} \) the space of infinitely differentiable functions on \(\mathbb{R}^n \). If \(\Gamma \) is a closed convex cone in \(\mathbb{R}^n \) with vertex at the origin, we denote by \(\Gamma^+ \) the dual cone defined by \(\{ \xi \in \mathbb{R}^n | \langle \xi, x \rangle > 0, x \in \Gamma \} \). Then \(\Gamma^{++} = \Gamma \). The interior \(\Gamma_0^+ \) of \(\Gamma^+ \) is nonempty if and only if \(\Gamma \) is salient, i.e. contains no subspace other than \(\{0\} \). If \(\Gamma \) is salient then \(\mathcal{D}'_\Gamma \) is a commutative ring relative to convolution. If \(H \) is a closed half-space with interior normal \(\eta \in \Gamma_0^+ \) then \(\mathcal{D}'_H \) is a \(\mathcal{D}'_\Gamma \)-module, and differentiation commutes with convolution in the usual fashion. Finally we note \(\mathcal{S}'_\Gamma \) is a subring of \(\mathcal{D}'_\Gamma \). This fact is proved in the appendix below.

Let \(P(z) \) be a \(p \times q \) matrix over \(C[z_1, \ldots, z_n] \) and denote by \(P(D) \) the system of partial differential operators obtained by replacing \(z_j \) in \(P(z) \) by \(\partial / \partial x_j \). If \(p < q \) then a fundamental solution for \(P(D) \) is a \(q \times p \) matrix \(K \) over \(\mathcal{D}' \) such that

\[
P(D)K = \delta I
\]

where \(I \) is the \(p \times p \) identity matrix and \(\delta \) is the Dirac measure at \(0 \). In case \(p = q \) then \(P(D) \) has a fundamental solution with support in the closed convex salient cone \(\Gamma \) if and only if \(P(D) \) is hyperbolic with respect to each direction in \(\Gamma_0^+ \), [1]. In case \(p = q = 1 \) then \(P(D) \) has a temperate fundamental solution with support in the closed convex salient cone \(\Gamma \) if and only if \(P(z) \neq 0 \) for each \(z \) in \(\Gamma_0^+ + i\mathbb{R}^n \). This fact may be proved by means of an elementary inequality for polynomials, as is done in the introduction to [9]. The temperate case with \(p = 1, q > 1 \) is also considered in ([8], [9]) and may easily be generalized as is done below. In this note we will give a sufficient, and in case \(\Gamma \) is semialgebraic, necessary condition for \(P(D) \) in the case \(p < q \) to have a fundamental solution \(K \) with support in the closed convex salient cone \(\Gamma \). Our methods do not apply in the nonsalient case. The scalar case \(p = q = 1 \) with \(\Gamma \) nonsalient has been considered by A. Enqvist in [3] and in the temperate case in [4]. We will prove the following two theorems.

Received by the editors January 30, 1979.

1 Research supported in part by NSF MCS 74-06803-A03.

© 1980 American Mathematical Society

0002-9939/80/0000-0072/$02.50

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Theorem 1. Let Γ be a closed convex salient cone and $p < q$. Then $P(D)$ admits a temperate fundamental solution K with support in Γ if and only if for each z in the tube $\Gamma_0^+ + i\mathbb{R}^n$ the matrix $P(z)$ has rank p.

Theorem 2. Let Γ be a closed convex salient cone and $p < q$. Then $P(D)$ admits a fundamental solution K with support in Γ if and only if for each z in the tube $U + i\mathbb{R}^n$ the matrix $P(z)$ has rank p.

In the case $p = q$ we may dispense with the hypothesis that Γ is semialgebraic. There are at least two ways to do this. If $P(D)$ has a fundamental solution with support in Γ then the determinant $\det P(D)$ is hyperbolic with respect to each direction in Γ_0^+. From the theory of scalar hyperbolic operators [5] it follows that $\det P(D)$ is hyperbolic with respect to each direction in an open convex semialgebraic cone which contains Γ_0^+. By the lemma below we then obtain a closed convex semialgebraic cone $\Gamma' \subseteq \Gamma$ such that $P(D)$ has a fundamental solution with support in Γ'. Alternately, if Γ is not assumed semialgebraic a modification of the proof of necessity produces an open set U with the required properties other than convexity. In the case $p = q$, S. Bochner's theorem on tubes [6, Theorem 2.5.10] then shows we may replace U by its convex hull.

We first reduce the $p \times q$ system to a $1 \times N$ system, $N = (q)_p$. The notation $|J| = p$ will mean that $J = (j_1, \ldots, j_p)$ where the j_k are integers and $1 < j_k < q$ for each k. For each such J let $P^J(z)$ be the $p \times p$ matrix whose kth column is the j_kth column of $P(z)$ and let $Q_j(z)$ be the determinant of $P^J(z)$.

Lemma. Let Γ be a closed convex salient cone and $p < q$. Then $P(D)$ admits a fundamental solution (respectively, a temperate fundamental solution) with support in Γ if and only if there exist distributions (respectively, temperate distributions) L_j, $|J| = p$, with supports in Γ such that

$$\sum_{|J| = p} Q_j(D)L_j = \delta.$$ \hspace{1cm} (2)

Here the prime over the summation symbol indicates that we sum only over p-indices $J = (j_1, \ldots, j_p)$ with $1 < j_1 < \cdots < j_p < q$. For the proof, suppose first that (2) holds with supp $L_j \subseteq \Gamma$. Let $Q^h_i(z)$ be the (i, k)-cofactor of $P^J(z)$, that is $(-1)^{+\kappa}$ times the determinant of the matrix obtained from $P^J(z)$ by removing the ith row and the kth column. Then

$$\sum_{h=1}^{p} P_{ih}(z)Q^h_i(z) = \begin{cases} Q_i(z) & \text{if } l = i, \\ 0 & \text{if } l \neq i, \end{cases}$$

where $J = (j_1, \ldots, j_p)$. If we set

$$K_{jl} = \sum_{h=1}^{p} \sum Q^h_i(D)L_j, \quad 1 < j < q, 1 < l < p,$$

where the inner sum is over $|J| = p$ such that $j_h = j$, then supp $K_{jl} \subseteq \Gamma$ and

$$\sum_{j=1}^{q} P_j(D)K_{jl} = \sum_{|J| = p} \sum_{h=1}^{p} P_{ih}(D)Q^h_i(D)L_j,$$
whence (1) follows. If the L_j are temperate, then so also are the K_{ji}.

Conversely suppose (1) holds with $\text{supp } K_{ji} \subseteq \Gamma$. Let $A_{ji} = P_{ji}(D)\delta$ so $A \cdot K = \delta I$. Since the distributions with supports in Γ form a commutative ring with respect to convolution it makes sense to take the determinant. From the Binet-Cauchy formula we obtain

$$\delta = \det(A \cdot K) = \sum'_{|J|=p} (\det A_{ji}) \cdot (\det K_{ji})$$

where A_{ji} is the matrix whose kth column is the j_kth column of A and K_{ji} is the matrix whose kth row is the j_kth row of K. Since $A_{ji} = P_{ij}(D)(\delta I)$ we see that $\det A_{ji} = Q_{ij}(D)\delta$. If we set $L_{ij} = \det K_{ji}$ then (2) follows and $\text{supp } L_{ij} \subseteq \Gamma$. If K is temperate then the L_{ij} are temperate (see Appendix). Note it is not difficult to see if we start with K and set $L_{ij} = \det K_{ji}$ then the construction at the beginning of the proof yields the original K.

The lemma is now proved and moreover Theorem 1 follows from the $p = 1$ case which is considered in [8], [9]. The proof of the lemma is quite standard. The argument for example is similar to the argument in the $p = q$ case given in [1, Lemma 3.2]. The sufficiency of (2) in the $p < q$ case is the same as the argument in [11, Theorem 4.1]. We gave the argument, however, because prior to proceeding to the proof of Theorem 2 we will use the notation and proof of the lemma to solve an overdetermined Cauchy problem for a half-space when compatibility conditions are satisfied. Let $P'(z)$ denote the transpose of the matrix $P(z)$.

Theorem 3. Let Γ be a closed convex salient cone and $p < q$. Assume (1) holds with $\text{supp } K \subseteq \Gamma$. Let $\eta \in \Gamma'_{\nu}$ and let H be the closed half-space $\{x \in \mathbb{R}^n | \langle x, \eta \rangle > 0 \}$. If $w \in (\otimes)'^\rho$ and if $\text{supp}(P'(D)w) \subseteq H$ then there exists a unique $u \in (\otimes)'^\rho$ such that

$$\text{supp } u \subseteq H, \quad P'(D)u = P'(D)w.$$

Moreover, if $w \in \mathcal{E}^\rho$ then $u \in \mathcal{E}^\rho$.

We prove uniqueness first. Suppose $u \in (\otimes)'^\rho$ and let $v = K' \cdot P'(D)u$. Since $K_{jk} \in \otimes'_{\Gamma'}$ we have

$$v_k = \sum_j K_{jk} \cdot \sum_h P_{jh}(D)u_h$$

$$= \sum_{j,h} P_{jh}(D)K_{jk} \cdot u_h = u_k.$$

Thus $u = K' \cdot P'(D)u$ for any $u \in (\otimes)'_{\nu}$ which gives the uniqueness.

For existence we define $u \in (\otimes)'^\rho$ by $u = K' \cdot P'(D)w$. Note if w is smooth, then so is u which gives the last part. To see that u is a solution, since we have no control over supp w some care is required in commuting convolutions and differentiations. By the proof of the lemma we have $L_{ij} \in \otimes'_{\Gamma'}$ such that

$$K_{jk} = \sum_{h=1}^p \sum'_{Q_{kj}^h(D)} L_{ij}$$
where the inner sum is over $|J| = p$ with $j_h = j$. Then, since $\text{supp } L_J \subseteq \Gamma$,

$$u_k = \sum_j K_{jk} \cdot P_j(D)w_i$$

$$= \sum'_{|J|=p} \frac{1}{h} \sum_i Q_{j,h_k}^k(D) L_J \cdot \sum_h P_{ij_h}(D)w_i$$

$$= \sum'_{|J|=p} L_J \cdot \sum_{i,h} Q_{j,h_k}^k(D) P_{ij_h}(D)w_i.$$

Now

$$Q_j(D)w_k = \sum_{i,h} Q_{j,h_k}^k(D) P_{ij_h}(D)w_i$$

implies $Q_j(D)w_k$ has support in H for each J and each k. From the above computation we have

$$u_k = \sum'_{|J|=p} L_J \cdot Q_j(D)w_k$$

and therefore

$$\sum_k P_{kl}(D)u_k = \sum'_{|J|=p} L_J \cdot Q_j(D) \sum_k P_{kl}(D)w_k$$

$$= \sum'_{|J|=p} Q_j(D) L_J \cdot \sum_k P_{kl}(D)w_k$$

$$= \sum_k P_{kl}(D)w_k$$

where the first equality follows from the fact that $Q_j(D)w_k$ has support in H and the second from the fact that $P'(D)w$ has support in H.

Proof of Theorem 2. By the lemma we may assume $p = 1$. Thus $P(z) = (P_1(z), \ldots, P_q(z))$. Suppose first that $P_1(z), \ldots, P_q(z)$ have no common zero in $U + iR^n$ where U is a convex open subset of Γ^+ such that $tU \subseteq U$ if $t > 1$ and Γ^+ is the union of tU for $t > 0$. Locally in $U + iR^n$ we can find holomorphic functions F_j such that $\sum P_j(z)F_j(z) = 1$. By Cartan's Theorem B [6, Theorem 7.4.3] these local solutions may be modified to fit together to give global holomorphic functions F_j (here we use the convexity of U). Moreover by [8, Theorem 1] we may choose the holomorphic functions F_j so that

$$|F_j(z)| < C(1 + |z|)^{m}d(\xi)^{-m}, \quad z \in U + iR^n,$$

for some constants C, N and m. Here ξ is the real part of z and $d(\xi)$ is the minimum of 1 and the distance from ξ to the boundary of U. By [10, Proposition 6, p. 306] F_j is the Laplace transform of a distribution K_j. Then $\sum P_j(D)K_j = \delta$ and it remains to locate the support of K_j. That supp K_j is contained in Γ follows directly by estimating

$$\langle K_j, \phi \rangle = (2\pi)^{-n} \int F_j(\xi + \eta)\tilde{\phi}(i\xi - \eta)d\eta$$

where $\phi \in \mathcal{E}$ has support in a compact convex set disjoint from Γ and $\tilde{\phi}$ is the Fourier transform of ϕ. The integral is independent of $\xi \in \Gamma^+$ and we simply
separate Γ and $\text{supp} \, \hat{\phi}$ by a hyperplane with normal $\xi \in \Gamma_0^+$ and let $|\xi| \to \infty$. Alternately $\text{supp} \, K_j$ is contained in Γ by [10, Remark 1, p. 310].

For the converse we modify the argument in [1, Theorem 3.5]. Assume there exist $K_j \in \mathcal{D}_\mathcal{C}^+$ such that $\sum P_j(D)K_j = \delta$. Choose $\phi \in \mathcal{S}$ with $\phi(x) = 1$ if $|x| < 1$ and $\phi(x) = 0$ if $|x| > 2$. Then $\sum P_j(D)(\phi K_j) = \delta + g$ where $g \in L^\infty$ and $\text{supp} \, g \subseteq \{x \in \mathbb{R}^n | 1 < |x| < 2\}$. Let G_j be the Laplace transform of ϕK_j and let G be the Laplace transform of g. Then G and the G_j are entire functions and $\sum P_j(z)G_j(z) = 1 + G(z)$. By the Paley-Wiener theorem [2, p. 211]

$$|G(z)| < C(1 + |z|)^N e^{h(-z)}$$

where $z = \xi + i\eta$ and where $h(-\xi) = \sup\{\langle \xi, x \rangle | x \in \mathcal{E}, 1 < |x| < 2\}$. If $\xi \in \Gamma_0^+$ then $\langle \xi, x \rangle > 0$ for each $x \in \mathcal{E}$, $x \neq 0$ and hence $h(-\xi) = -\text{dist}(\xi, \partial \mathcal{E}^+)$. Here $\text{dist}(\xi, \partial \mathcal{E}^+) = \inf\{\langle \xi, x \rangle | x \in \mathcal{E}, |x| = 1\}$ is easily seen to be the distance from ξ to the boundary of \mathcal{E}^+. At any common zero of the P_j we have $G(z) = -1$. Thus for some constants C and N we have

$$\text{dist}(\xi, \partial \mathcal{E}^+) < C + N \log(1 + |z|)$$

if $\xi \in \Gamma_0^+$, $z = \xi + i\eta$ and $P_j(z) = 0, j = 1, \ldots, q$.

Suppose now Γ is semialgebraic. First note Γ_0^+ is the complement of the projection on the first n coordinates of the set of (ξ, x) such that $\xi \in \mathbb{R}^n$, $x \in \mathcal{E}$, $x \neq 0$, $\langle \xi, x \rangle < 0$ and hence is semialgebraic by the Seidenberg-Tarski theorem. It follows that the set of (μ, ξ, x) such that $\xi \in \Gamma_0^+$, $x \in \mathcal{E}, |x| = 1$, $\mu > \langle \xi, x \rangle$ is semialgebraic and hence by the Seidenberg-Tarski theorem the set M of (μ, ξ) such that $\xi \in \Gamma_0^+$ and $\mu > \text{dist}(\xi, \partial \mathcal{E}^+)$ is semialgebraic. An application of the Seidenberg-Tarski theorem shows that the closure and interior of a semialgebraic set is semialgebraic. Thus $\delta M \cap (R \times \Gamma_0^+) = \{(\mu, \xi) | \xi \in \Gamma_0^+, \mu = \text{dist}(\xi, \partial \mathcal{E}^+)\}$ is semialgebraic. This property of the distance function, that the graph is semialgebraic, is known in other cases as well but is particularly simple to prove in our case because we have a nice formula for the distance to the boundary of a convex cone. It now follows that the set L_0 of (μ, τ, ξ, η) such that $\xi \in \Gamma_0^+, \mu = \text{dist}(\xi, \partial \mathcal{E}^+)$, $\tau > |\xi + i\eta|$, $P_j(\xi + i\eta) = 0, j = 1, \ldots, q$, is semialgebraic. Again by the Seidenberg-Tarski theorem the projection L on the first two coordinates is semialgebraic. By (4) if $(\mu, \tau) \in L$ then $\mu < C + N \log(1 + \tau)$. By [5, Lemma 2.1, p. 276] it follows that there is a constant C_1 such that $\mu < C_1$ if $(\mu, \tau) \in L$. Now let $U = \{\xi \in \Gamma_0^+ | \text{dist}(\xi, \partial \mathcal{E}^+) > C_1\}$.

Appendix. We now show $S'_\mathcal{C}$ is a subring of $\mathcal{D}_\mathcal{C}$. Suppose $f, g \in S'_\mathcal{C}$. Then

$$e^{-\langle \xi, \cdot \rangle}(f * g) = (e^{-\langle \xi, \cdot \rangle}f) \ast (e^{-\langle \xi, \cdot \rangle}g).$$

For each $\xi \in \Gamma_0^+$ the factors on the right are in S' and therefore by [10, Corollary, p. 302] are in $\mathcal{D}_\mathcal{C}$. It follows that $e^{-\langle \xi, \cdot \rangle}(f * g)$ is in $\mathcal{D}_\mathcal{C}$. Taking Fourier transforms we obtain

$$(e^{-\langle \xi, \cdot \rangle}(f * g))(\eta) = F(\xi + i\eta)G(\xi + i\eta)$$

where F (respectively G) is the Fourier transform of f (respectively g). The product on the right is a holomorphic function in $\Gamma_0^+ + i\mathbb{R}^n$ and by [7, Theorem 1] is the Laplace transform of a distribution $u \in S'_\mathcal{C}$. Obviously $u = f * g$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Department of Mathematics, Oregon State University, Corvallis, Oregon 97331