SYSTEMS OF PARTIAL DIFFERENTIAL OPERATORS
WITH FUNDAMENTAL SOLUTIONS
SUPPORTED BY A CONE

KIRK E. LANCASTER AND BENT E. PETERSEN

Abstract. Necessary and sufficient conditions are given for a system of partial
differential operators to have a fundamental solution supported by a convex salient
cone. As a simple application an overdetermined Cauchy problem is solved.

If A is a subset of \(\mathbb{R}^n \) and \(\mathcal{F} \) is a space of distributions on \(\mathbb{R}^n \) we denote by \(\mathcal{F}_A \)
the space of distributions in \(\mathcal{F} \) which have supports contained in \(A \). We denote by
\(\mathcal{D}' \) the space of all distributions on \(\mathbb{R}^n \), by \(\mathcal{S}' \) the space of temperate distributions,
and by \(\mathcal{S} \) the space of infinitely differentiable functions on \(\mathbb{R}^n \). If \(\Gamma \) is a closed
convex cone in \(\mathbb{R}^n \) with vertex at the origin, we denote by \(\Gamma^+ \) the dual cone defined
by \(\Gamma^+ = \{ \xi \in \mathbb{R}^n \mid \langle \xi, x \rangle > 0, x \in \Gamma \} \). Then \(\Gamma^{++} = \Gamma \). The interior \(\Gamma_0^+ \) of \(\Gamma^+ \) is
nonempty if and only if \(\Gamma \) is salient, i.e. contains no subspace other than \(\{0\} \). If \(\Gamma \) is
salient then \(\mathcal{D}'_{\Gamma} \) is a commutative ring relative to convolution. If \(H \) is a closed
half-space with interior normal \(\eta \in \Gamma_0^+ \) then \(\mathcal{D}'_H \) is a \(\mathcal{D}'_{\Gamma} \)-module, and differentiation
commutes with convolution in the usual fashion. Finally we note \(\mathcal{S}'_{\Gamma} \) is a
subring of \(\mathcal{D}'_{\Gamma} \). This fact is proved in the appendix below.

Let \(P(z) \) be a \(p \times q \) matrix over \(C[z_1, \ldots, z_n] \) and denote by \(P(D) \) the system of
partial differential operators obtained by replacing \(z_j \) in \(P(z) \) by \(\partial/\partial x_j \). If \(p < q \)
then a fundamental solution for \(P(D) \) is a \(q \times p \) matrix \(K \) over \(\mathcal{D}' \) such that

\[
P(D)K = \delta I
\]

where \(I \) is the \(p \times p \) identity matrix and \(\delta \) is the Dirac measure at 0. In case \(p = q \)
then \(P(D) \) has a fundamental solution with support in the closed convex salient
cone \(\Gamma \) if and only if \(P(D) \) is hyperbolic with respect to each direction in \(\Gamma_0^+ \), [1]. In
case \(p = q = 1 \) then \(P(D) \) has a temperate fundamental solution with support in
the closed convex salient cone \(\Gamma \) if and only if \(P(z) \neq 0 \) for each \(z \) in \(\Gamma_0^+ + i\mathbb{R}^n \).
This fact may be proved by means of an elementary inequality for polynomials, as
is done in the introduction to [9]. The temperate case with \(p = 1, q > 1 \) is also
considered in ([8], [9]) and may easily be generalized as is done below. In this note
we will give a sufficient, and in case \(\Gamma \) is semialgebraic, necessary condition for
\(P(D) \) in the case \(p < q \) to have a fundamental solution \(K \) with support in the
closed convex salient cone \(\Gamma \). Our methods do not apply in the nonsalient case. The
scalar case \(p = q = 1 \) with \(\Gamma \) nonsalient has been considered by A. Enqvist in [3]
and in the temperate case in [4]. We will prove the following two theorems.

1 Research supported in part by NSF MCS 74-06803-A03.

© 1980 American Mathematical Society

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Theorem 1. Let Γ be a closed convex salient cone and $p < q$. Then $P(D)$ admits a temperate fundamental solution K with support in Γ if and only if for each z in the tube $\Gamma_0^+ + i\mathbb{R}^n$ the matrix $P(z)$ has rank p.

Theorem 2. Let Γ be a closed convex salient cone and $p < q$. Then $P(D)$ admits a fundamental solution K with support in Γ if, and in the case Γ is semialgebraic, only if there exists a convex open set U in Γ_0^+ such that $tU \subseteq U$ for $t > 1$, $\Gamma_0^+ = \bigcup tU$ ($t > 0$) and for each z in the tube $U + i\mathbb{R}^n$ the matrix $P(z)$ has rank p.

In the case $p = q$ we may dispense with the hypothesis that Γ is semialgebraic. There are at least two ways to do this. If $P(D)$ has a fundamental solution with support in Γ then the determinant $\det P(D)$ is hyperbolic with respect to each direction in Γ^+. From the theory of scalar hyperbolic operators [5] it follows that $\det P(D)$ is hyperbolic with respect to each direction in an open convex semialgebraic cone which contains Γ_0^+. By the lemma below we then obtain a closed convex semialgebraic cone $\Gamma' \subseteq \Gamma$ such that $P(D)$ has a fundamental solution with support in Γ'. Alternately, if Γ is not assumed semialgebraic a modification of the proof of necessity produces an open set U with the required properties other than convexity. In the case $p = q$, S. Bochner's theorem on tubes [6, Theorem 2.5.10] then shows we may replace U by its convex hull.

We first reduce the $p \times q$ system to a $1 \times N$ system, $N = \binom{q}{p}$. The notation $|J| = p$ will mean that $J = (j_1, \ldots, j_p)$ where the j_k are integers and $1 < j_k < q$ for each k. For each such J let $P^J(z)$ be the $p \times p$ matrix whose kth column is the j_kth column of $P(z)$ and let $Q^J(z)$ be the determinant of $P^J(z)$.

Lemma. Let Γ be a closed convex salient cone and $p < q$. Then $P(D)$ admits a fundamental solution (respectively, a temperate fundamental solution) with support in Γ if and only if there exist distributions (respectively, temperate distributions) \mathcal{L}_J, $|J| = p$, with supports in Γ such that

$$\sum_{|J| = p} Q^J(D) \mathcal{L}_J = \delta. \tag{2}$$

Here the prime over the summation symbol indicates that we sum only over p-indices $J = (j_1, \ldots, j_p)$ with $1 < j_1 < \cdots < j_p < q$. For the proof, suppose first that (2) holds with supp $L_j \subseteq \Gamma$. Let $Q^i_k(z)$ be the (i, k)-cofactor of $P^J(z)$, that is $(-1)^{i+k}$ times the determinant of the matrix obtained from $P^J(z)$ by removing the ith row and the kth column. Then

$$\sum_{h=1}^p P_{ih}(z) Q^i_h(z) = \begin{cases} Q^i_j(z) & \text{if } l = i, \\ 0 & \text{if } l \neq i, \end{cases}$$

where $J = (j_1, \ldots, j_p)$. If we set

$$K_{jl} = \sum_{h=1}^p \sum_{j' = 1}^q Q^{j'}_h(D) L_{j'}, \quad 1 < j < q, 1 < l < p,$$

where the inner sum is over $|J| = p$ such that $j_h = j$, then supp $K_{jl} \subseteq \Gamma$ and

$$\sum_{j=1}^q P_j(D) K_{jl} = \sum_{|J| = p} \sum_{h=1}^p P_{ih}(D) Q^i_h(D) L_{j'},$$
whence (1) follows. If the L_j are temperate, then so also are the K_{jt}.

Conversely suppose (1) holds with $supp\ K_{jt} \subseteq \Gamma$. Let $A_{jt} = p_{jt}(D)\delta$ so $A \cdot K = \delta I$. Since the distributions with supports in Γ form a commutative ring with respect to convolution it makes sense to take the determinant. From the Binet-Cauchy formula we obtain

$$\delta = \det(A \cdot K) = \sum'_{|J| = p} (\det A_{jt}) \cdot (\det K_{jt})$$

where A_{jt} is the matrix whose kth column is the j_kth column of A and K_{jt} is the matrix whose kth row is the j_kth row of K. Since $A_{jt} = p_{jt}(D)(\delta I)$ we see that $\det A_{jt} = p_{jt}(D)\delta$. If we set $L_j = detK_j$ then (2) follows and $suppL_j \subseteq \Gamma$. If K is temperate then the L_j are temperate (see Appendix). Note it is not difficult to see if we start with K and set $L_j = det K_j$ then the construction at the beginning of the proof yields the original K.

The lemma is now proved and moreover Theorem 1 follows from the $p = 1$ case which is considered in [8], [9]. The proof of the lemma is quite standard. The argument for example is similar to the argument in the $p = q$ case given in [1, Lemma 3.2]. The sufficiency of (2) in the $p < q$ case is the same as the argument in [11, Theorem 4.1]. We gave the argument, however, because prior to proceeding to the proof of Theorem 2 we will use the notation and proof of the lemma to solve an overdetermined Cauchy problem for a half-space when compatibility conditions are satisfied. Let $P'(z)$ denote the transpose of the matrix $P(z)$.

Theorem 3. Let Γ be a closed convex salient cone and $p < q$. Assume (1) holds with $supp\ K \subseteq \Gamma$. Let $\eta \in \Gamma_{p}'$ and let H be the closed half-space $\{x \in \mathbb{R}^n | \langle x, \eta \rangle > 0\}$. If $w \in (\mathbb{R})^p$ and if $supp(P'(D)w) \subseteq H$ then there exists a unique $u \in (\mathbb{R})^p$ such that

$$supp\ u \subseteq H, \quad P'(D)u = P'(D)w.$$

Moreover, if $w \in \mathbb{S}^p$ then $u \in \mathbb{S}^p$.

We prove uniqueness first. Suppose $u \in (\mathbb{R})_{H}^p$ and let $v = K' \cdot P'(D)u$. Since $K_{jk} \in \mathbb{R}_{\Gamma}'$ we have

$$v_k = \sum_j K_{jk} \cdot \sum_h p_{hj}(D)u_h$$

$$= \sum_{j,h} p_{hj}(D)K_{jk} \cdot u_h = u_k.$$

Thus $u = K' \cdot P'(D)u$ for any $u \in (\mathbb{R})_{H}^p$ which gives the uniqueness.

For existence we define $u \in (\mathbb{R})_{H}^p$ by $u = K' \cdot P'(D)w$. Note if w is smooth, then so is u which gives the last part. To see that u is a solution, since we have no control over $supp\ w$ some care is required in commuting convolutions and differentiations. By the proof of the lemma we have $L_j \in \mathbb{R}_{\Gamma}'$ such that

$$K_{jk} = \sum_{h=1}^{p} \sum' Q_{jh}^{bh}(D)\ L_j$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
where the inner sum is over $|J| = p$ with $j_h = j$. Then, since $\text{supp} \ L_j \subseteq \Gamma$,

$$u_k = \sum_j K_{jk} \cdot P_j(D) w_i$$

$$= \sum_{|J| = p} \sum_h Q_j^{kh}(D) L_j \cdot \sum_i P_{ih}(D) w_i$$

$$= \sum_{|J| = p} L_j \cdot \sum_{i, h} Q_j^{kh}(D) P_{ih}(D) w_i.$$

Now

$$Q_j(D) w_k = \sum_{i, h} Q_j^{kh}(D) P_{ih}(D) w_i$$

implies $Q_j(D) w_k$ has support in H for each J and each k. From the above computation we have

$$u_k = \sum_{|J| = p} L_j \cdot Q_j(D) w_k$$

and therefore

$$\sum_k P_{kl}(D) u_k = \sum_{|J| = p} L_j \cdot Q_j(D) \sum_k P_{kl}(D) w_k$$

$$= \sum_{|J| = p} Q_j(D) L_j \cdot \sum_k P_{kl}(D) w_k$$

$$= \sum_k P_{kl}(D) w_k$$

where the first equality follows from the fact that $Q_j(D) w_k$ has support in H and the second from the fact that $P'(D) w$ has support in H.

Proof of Theorem 2. By the lemma we may assume $p = 1$. Thus $P(z) = (P_1(z), \ldots, P_q(z))$. Suppose first that $P_1(z), \ldots, P_q(z)$ have no common zero in $U + iR^n$ where U is a convex open subset of Γ_0^+ such that $tU \subseteq U$ if $t > 1$ and Γ_0^+ is the union of tU for $t > 0$. Locally in $U + iR^n$ we can find holomorphic functions F_j such that $\sum P_j(z) F_j(z) = 1$. By Cartan's Theorem B [6, Theorem 7.4.3] these local solutions may be modified to fit together to give global holomorphic functions F_j (here we use the convexity of U). Moreover by [8, Theorem 1] we may choose the holomorphic functions F_j so that

$$|F_j(z)| < C(1 + |z|)^N d(\xi)^{-m}, \quad z \in U + iR^n,$$

for some constants C, N and m. Here ξ is the real part of z and $d(\xi)$ is the minimum of 1 and the distance from ξ to the boundary of U. By [10, Proposition 6, p. 306] F_j is the Laplace transform of a distribution K_j. Then $\sum P_j(D) K_j = \delta$ and it remains to locate the support of K_j. That $\text{supp} \ K_j$ is contained in Γ follows directly by estimating

$$\langle K_j, \phi \rangle = (2\pi)^{-n} \int F_j(\xi + i\eta) \bar{\phi}(i\xi - \eta) d\eta$$

where $\phi \in \mathcal{S}$ has support in a compact convex set disjoint from Γ and $\bar{\phi}$ is the Fourier transform of ϕ. The integral is independent of $\xi \in \Gamma_0^+$ and we simply
separate \(\Gamma \) and \(\text{supp } \hat{\phi} \) by a hyperplane with normal \(\xi \in \Gamma_0^+ \) and let \(|\xi| \to \infty \). Alternately \(\text{supp } K_j \) is contained in \(\Gamma \) by [10, Remark 1, p. 310].

For the converse we modify the argument in [1, Theorem 3.5]. Assume there exist \(K_j \in \mathcal{D}_r'^{+} \) such that \(\Sigma P_j(D)K_j = \delta \). Choose \(\phi \in \mathcal{S} \) with \(\phi(x) = 1 \) if \(|x| < 1 \) and \(\phi(x) = 0 \) if \(|x| > 2 \). Then \(\Sigma P_j(D)(\phi K_j) = \delta + g \) where \(g \in \mathcal{D}_r' \) and \(\text{supp } g \subseteq \{ x \in \Gamma | 1 < |x| < 2 \} \). Let \(G_j \) be the Laplace transform of \(\phi K_j \) and let \(G \) be the Laplace transform of \(g \). Then \(G \) and the \(G_j \) are entire functions and \(\Sigma P_j(z)G_j(z) = 1 + G(z) \). By the Paley-Wiener theorem [2, p. 211]

\[
|G(z)| < C(1 + |z|)^N e^{h(\xi)}
\]

where \(z = \xi + i\eta \) and where \(h(\xi) = \sup \{-\langle \xi, x \rangle | x \in \Gamma, 1 < |x| < 2 \} \). If \(\xi \in \Gamma_0^+ \) then \(\langle \xi, x \rangle > 0 \) for each \(x \in \Gamma \), \(x \neq 0 \) and hence \(h(\xi) = -\text{dist}(\xi, \partial \Gamma_0^+) \). Here \(\text{dist}(\xi, \partial \Gamma_0^+) = \inf \{ \langle \xi, x \rangle | x \in \Gamma, |x| = 1 \} \) is easily seen to be the distance from \(\xi \) to the boundary of \(\Gamma_0^+ \). At any common zero of the \(P_j \) we have \(G(z) = -1 \). Thus for some constants \(C \) and \(N \) we have

\[
\text{dist}(\xi, \partial \Gamma_0^+) < C + N \log(1 + |z|)
\]

if \(\xi \in \Gamma_0^+, z = \xi + i\eta \) and \(P_j(z) = 0, j = 1, \ldots, q \).

Suppose now \(\Gamma \) is semialgebraic. First note \(\Gamma_0^+ \) is the complement of the projection on the first \(n \) coordinates of the set of \((\xi, x) \) such that \(\xi \in \mathbb{R}^n, x \in \Gamma, x \neq 0, \langle \xi, x \rangle < 0 \) and hence is semialgebraic by the Seidenberg-Tarski theorem. It follows that the set of \((\mu, \xi, x) \) such that \(\xi \in \mathbb{R}^n, x \in \Gamma, |x| = 1, \mu > \langle \xi, x \rangle \) is semialgebraic and hence by the Seidenberg-Tarski theorem the set \(M \) of \((\mu, \xi) \) such that \(\xi \in \Gamma_0^+ \) and \(\mu > \text{dist}(\xi, \partial \Gamma_0^+) \) is semialgebraic. An application of the Seidenberg-Tarski theorem shows that the closure and interior of a semialgebraic set is semialgebraic. Thus \(\partial M \cap (R \times \Gamma_0^+) = \{ (\mu, \xi) | \xi \in \Gamma_0^+, \mu = \text{dist}(\xi, \partial \Gamma_0^+) \} \) is semialgebraic. This property of the distance function, that the graph is semialgebraic, is known in other cases as well but is particularly simple to prove in our case because we have a nice formula for the distance to the boundary of a convex cone. It now follows that the set \(L_0 \) of \((\mu, \tau, \xi, \eta) \) such that \(\xi \in \Gamma_0^+, \mu = \text{dist}(\xi, \partial \Gamma_0^+), \tau > |\xi + i\eta|, P_j(\xi + i\eta) = 0, j = 1, \ldots, q \), is semialgebraic. Again by the Seidenberg-Tarski theorem the projection \(L \) on the first two coordinates is semialgebraic. By (4) if \((\mu, \tau) \in L \) then \(\mu < C + N \log(1 + \tau) \). By [5, Lemma 2.1, p. 276] it follows that there is a constant \(C_1 \) such that \(\mu < C_1 \) if \((\mu, \tau) \in L \). Now let \(U = \{ \xi \in \Gamma_0^{|\text{dist}(\xi, \partial \Gamma_0^+)} > C_1 \} \).

Appendix. We now show \(S_\Gamma' \) is a subring of \(\mathcal{D}_r'^{+} \). Suppose \(f, g \in S_\Gamma' \). Then

\[
e^{-\langle \xi, \cdot \rangle}(f \ast g) = (e^{-\langle \xi, \cdot \rangle}f) \ast (e^{-\langle \xi, \cdot \rangle}g).
\]

For each \(\xi \in \Gamma_0^+ \) the factors on the right are in \(S' \) and therefore by [10, Corollary, p. 302] are in \(\Theta_\Gamma' \). It follows that \(e^{-\langle \xi, \cdot \rangle}(f \ast g) \) is in \(\Theta_\Gamma' \). Taking Fourier transforms we obtain

\[
(e^{-\langle \xi, \cdot \rangle}(f \ast g))'((\eta)) = F(\xi + i\eta)G(\xi + i\eta)
\]

where \(F \) (respectively \(G \)) is the Fourier transform of \(f \) (respectively \(g \)). The product on the right is a holomorphic function in \(\Gamma_0^+ + i\mathbb{R}^n \) and by [7, Theorem 1] is the Laplace transform of a distribution \(u \in S_\Gamma' \). Obviously \(u = f \ast g \).
References

Department of Mathematics, Oregon State University, Corvallis, Oregon 97331