Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Interpolating functions associated with second-order differential equations


Author: William F. Trench
Journal: Proc. Amer. Math. Soc. 78 (1980), 253-258
MSC: Primary 34C10; Secondary 33A40, 34B25
DOI: https://doi.org/10.1090/S0002-9939-1980-0550507-9
MathSciNet review: 550507
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Functions are exhibited which interpolate the magnitude of a solution y of a linear, homogeneous, second-order differential equation at its critical points, $ \vert y'\vert$ at the zeros of y, and $ \vert\smallint _{{x_0}}^xy(t)h(t)\;dt\vert$ at the zeros of y. Except for a normalization condition, the interpolating functions are independent of the specific solution y. A theorem similar in its conclusions to the Sonin-Pólya-Butlewski theorem is presented and examples are given.


References [Enhancements On Off] (What's this?)

  • [1] O. Borůvka, Linear differential transformations of the second order, English Univ. Press, 1971 (German original, Lineare Differentialtransformationen 2. Ordnung, VEB, Berlin, 1967). MR 0463539 (57:3484)
  • [2] P. Hartman, Ordinary differential equations, 2nd ed., Hartman, Baltimore, Md., 1973. MR 0344555 (49:9294)
  • [3] L. Lorch and P. Szegö, Higher monotonicity properties of certain Sturm-Liouville functions, Acta Math. 109 (1963), 55-73. MR 0147695 (26:5209)
  • [4] L. Lorch, M. E. Muldoon and P. Szegö, Higher monotonicity properties of certain Sturm-Liouville functions. III, Canad. J. Math. 22 (1970), 1238-1265. MR 0274845 (43:603)
  • [5] L. Lorch, M. E. Muldoon and P. Szegö, Higher monotonicity properties of certain Sturm-Liouville functions. IV, Canad. J. Math. 24 (1972), 349-368. MR 0298113 (45:7165)
  • [6] H. Milloux, Sur l'équation différentielle $ x'' + xA(t) = 0$, Prace Mat.-Fiz. 41 (1933), 39-54.
  • [7] G. Szegö, Orthogonal polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R. I., 1975.
  • [8] G. N. Watson, A treatise on the theory of Bessel functions, 2nd ed., Cambridge Univ. Press, Cambridge, 1944. MR 0010746 (6:64a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34C10, 33A40, 34B25

Retrieve articles in all journals with MSC: 34C10, 33A40, 34B25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1980-0550507-9
Keywords: Zeros, interpolation, cylinder function, Sonin-Pólya-Butlewski theorem
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society