ON BEURLING'S THEOREM FOR LOCALLY COMPACT GROUPS

YITZHAK WEIT

Abstract. Beurling's Theorem in spectral analysis of bounded functions on the real line is generalized to a class of semidirect products of locally compact abelian groups.

As an immediate consequence of Wiener's Tauberian Theorem one has, by duality (see [4, p. 181]), the following theorem on spectral analysis: Unless \(f \in L_\infty(\mathbb{R}) \) is zero almost everywhere, the \(\ast \)-closed subspace generated by the translates of \(f \) contains a function \(e^{i\lambda x} \) for some \(\lambda \in \mathbb{R} \). Beurling proved [1] much more about a smaller class of functions. His theorem is, essentially, the following:

Beurling's Theorem. Let \(f \) be a nonzero, bounded uniformly continuous function on \(\mathbb{R} \). Then there exists a real number \(\lambda \), such that the function \(e^{i\lambda x} \) belongs to the \(\ast \)-closure of some norm-bounded set of linear combinations of translates of \(f \).

This result was generalized to locally compact abelian groups [2], [3].

The purpose of this note is to generalize Beurling's Theorem to a class of semidirect products of locally compact abelian groups.

For the group \(G^* \) of the linear transformations on the real line of the form \(ax + b, a > 0, b \in \mathbb{R} \), the following result was announced in [5]: Every proper closed two-sided ideal of \(L_1(G^*) \) is contained in a maximal modular two-sided ideal. Our result implies, by duality, that every proper closed two-sided ideal of \(L_1(G^*) \) is contained, actually, in the kernel of a one-dimensional representation of \(G^* \) and that all closed two-sided maximal ideals of \(L_1(G^*) \) are of this type.

Let \(G = N \rtimes H \) denote the semidirect product of the groups \(N \) and \(H \) and let \(h \to \tau_h \) be the homomorphism which carries \(H \) onto a group of automorphisms of \(N \).

For a locally compact abelian group \(G \), let \(\hat{G} \) denote the character group of \(G \) and \(1_G \) the identity element of \(G \).

We prove the following theorem:

Theorem. Let \(G = N \rtimes H \) where \(N \) and \(H \) are locally compact abelian groups. Suppose that for every \(\chi \in \hat{N} \), there exists a sequence \(\{ h_k \}_{k=1}^{\infty} \) in \(H \) such that \(\chi \circ \tau_{h_k} \to 1_N \) in the \(\ast \)-topology of \(L_\infty(N) \). Then, for every \(f \in L_\infty(G) \), \(f \neq 0 \), the \(\ast \)-closed subspace generated by the two-sided translates of \(f \) contains a character \(\psi \) of \(G \). Moreover, if \(f \) is uniformly continuous, the character \(\psi \) belongs to the \(\ast \)-closure of some norm-bounded set of linear combinations of two-sided translates of \(f \).
Proof. Let M denote the w^*-closed subspace generated by the two-sided translates of the function $f \in L_{\infty}(G), f \neq 0$. The subspace M contains all functions g such that

$$g(n, h) = f(n_2 \tau_{h^n}(n_1) \tau_{h^n}(n), h'h''h)$$

where $n_1, n_2 \in N$ and $h', h'' \in H$.

Let $h'' = 1_H$ and $n_1 = 1_N$. Then, applying Wiener's Theorem for $N \times H$, we deduce that $\chi \otimes \Phi \in M$ for some $\chi \in \hat{N}$ and $\Phi \in \hat{H}$. (Here, $\chi \otimes \Phi$ denotes the function defined by $\chi \otimes \Phi(n, h) = \chi(n)\Phi(h).$) If we apply (1) to $\chi \otimes \Phi \in M$ where $n_1 = n_2 = 1_N$, $h' = 1_H$ and $h'' = h_k$, we have

$$ (\chi \circ \tau_{h_k}) \otimes \Phi \in M \quad (k = 1, 2, \ldots) $$

and

$$ (\chi \circ \tau_{h_k}) \otimes \Phi \longrightarrow 1_N \otimes \Phi $$

which is a character of G.

If f is uniformly continuous, then by Beurling's Theorem for $N \times H$, the function $\chi \otimes \Phi$ belongs to the w^*-closure of some norm-bounded set of linear combinations of two-sided translates of f. Proceeding as above, we complete the proof of the theorem.

References

Department of Mathematics, University of Haifa, Haifa, Israel