APPROXIMATION BY NONFUNDAMENTAL SEQUENCES OF TRANSLATES

R. A. ZALIK

Abstract. For functions \(f(t) \) satisfying certain growth conditions, we consider a sequence of the form \(\{ f(c_n - t) \} \), nonfundamental in \(L_2(R) \), and find a representation for those functions which are in the closure of its linear span. Some theorems concerning degree of approximation are also proved.

In [1], we found necessary and sufficient conditions for a sequence of the form \(\{ f(c_n - t) \} \) to be fundamental in \(L_2(R) \). In this paper, motivated by earlier research of L. Schwartz [2], and I. I. Hirschmann, Jr. [3] (see also J. Korevaar [4], W. A. J. Luxemburg and J. Korevaar [5, p. 35, Theorem 8.2], and Clarkson and Erdös [6]), we consider the nonfundamental case and find a representation of those functions which are in the \(L_2(R) \) closure of the linear span of \(\{ f(c_n - t) \} \). Our result applies to a different class of functions than those considered by the above mentioned authors. The techniques developed to attack this problem are also applied to find a lower bound for the \(L_2(R) \) distance from \(f(c - t) \) to the linear span of \(\{ f(c_r - t); r = 0, \ldots, n \} \), obtaining a result similar to [5, p. 31, Theorem 7.1], [4, p. 363, Theorem 4], or [6, p. 6, Theorem 2]. Finally, we also prove a Jackson type theorem valid for a class of continuous functions defined on a bounded interval.

In what follows, \(\{ d_n \} \) will be a sequence of distinct real numbers, satisfying the following conditions:

\[
|c_n^2 - c_r^2| > \rho |n - r| \quad (\rho > 0) \quad \text{and} \quad \sum' |c_n|^{-2} < \infty. \tag{1}
\]

(By \(\sum' |c_n|^{-2} \) we denote the sum of all terms of the form indicated, with nonvanishing denominator.) Note that (1) is satisfied if, for instance

\[
|c_{n+1}| > \rho |c_n| \quad (\rho > \sqrt{2}).
\]

Given a function \(f(t) \), by \(F(t) \) we shall denote its Fourier transform. Thus

\[
F(t) = (2\pi)^{-1/2} \int_R \exp(\imath xt)f(t) \, dt.
\]

We shall assume that there are strictly positive numbers \(a, b \) and \(\alpha \), such that for \(t \) real, \(f(t) = O[\exp(-\alpha t^2)] \), \(F(t) = O[\exp(-\alpha t^2)] \), \(t \to \infty \), and \(\exp(-\beta t^2)/F(t) \) is in \(L_2(R) \). By a theorem of Babenko, later generalized by Gel'fand and Šilov, we know that the growth condition on \(f(t) \) can be replaced by the assumption that \(F \) is an

Received by the editors January 19, 1979.

AMS (MOS) subject classifications (1970). Primary 30A62, 41A30, 42A64; Secondary 42A68.

Key words and phrases. Approximation by sequences of translates, entire functions, Fourier inversion.
entire function of order 2 and finite type (cf. [7, p. 238, Theorem 3]). Finally, if \(f_n(t) = f(c_n - t) \), and \(F_n(t) \) is its Fourier transform, it is readily seen that \(F_n(-t) = F(t) \exp(c_n it) \); we shall denote by \(S \) the linear span of the sequence \(\{ f_n \} \), and by \(T \) the linear span of the sequence \(\{ F_n \} \).

Our first result is:

Theorem 1. Assume \(\{ c_n \} \) satisfies (1). Then if the function \(g(t) \) is in the \(L_2(\mathbb{R}) \) closure of \(S \), it coincides a.e. on \(\mathbb{R} \) with a series of the form \(\sum b_j f_j(t) \).

Theorem 1 is proved with the help of the following auxiliary proposition:

Lemma. Assume \(\{ c_n \} \) satisfies (1). Then there are continuous functions \(p_k(t) = p_k(t, \mu) \), having Fourier transforms \(m_k(t) = m_k(t, \mu) \), satisfying the following conditions:

(a) Let \(h(t) = \exp(-\delta t^2) / |F(t)| \); then for every \(\mu < 1/(2b) \) and positive,
\[
|m_k(t, \mu)| < d \exp\left[-\frac{1}{2} (1/(2\mu) - b) t^2 + \mu c_n^2 \right] h(t),
\]
where \(d \) is independent of \(k \).

(b) \(\int_R p_k(t) f_n(t) \, dt = \delta_{kn} \) where \(\delta_{kn} \) is Kronecker's delta.

(c) For \(g(t) \) in \(L_2(\mathbb{R}) \), let \(b_k(g) = \int_R p_k(t) g(t) \, dt \), then for any \(\delta < \alpha \) and positive, there is a value of \(\mu \) and a number \(\gamma \) such that for all real \(t \),
\[
|b_k(g)f_n(t)| < c^2 \|g\|_{L_2(\mathbb{R})} \exp(-\delta c_n^2 + \gamma t^2),
\]
where \(c \) is independent of \(k \), and if for this value of \(\mu \), \(S(g, t) = \sum b_n(g)f_n(t) \), then
\[
|S(g, t)| < M(t) \|g\|_{L_2(\mathbb{R})}, \quad \text{where } M(t) = c \exp(\gamma t^2) \sum \exp(-\delta c_n^2).
\]

Using the preceding Lemma, we can prove:

Theorem 2. Assume \(\{ c_n \} \) satisfies (1), and let \(c \) be any real number not in the range of the sequence \(\{ c_n \} \). If \(|c| = |c_n| \) for some \(n \), let \(m_c = 1 \); otherwise, let \(m_c = \inf |1 - (c/c_n)^2| \), the infimum being taken over the set of natural numbers. Let \(d_c \) denote the \(L_2(\mathbb{R}) \) distance from \(F(t) \exp(cti) \) to \(T \). Then there is a number \(D > 0 \), independent of \(c \) and \(k \), such that \(d_c > D m_c^2 \exp(-c^2/8b) \).

Remark. Since the Fourier transform is norm-preserving in \(L_2(\mathbb{R}) \), \(d_c \) also denotes the \(L_2(\mathbb{R}) \) distance from \(f(c - t) \) to \(S \). It should also be pointed out that the lower bound in Theorem 2 is not the best possible.

From Theorem 2 we obtain the following

Corollary. If \(c \) is not in the range of the sequence \(\{ c_n \} \), then neither \(F(t) \exp(cti) \) is in the \(L_2(\mathbb{R}) \) closure of \(T \), nor is \(f(c - t) \) in the \(L_2(\mathbb{R}) \) closure of \(S \).

Finally, we have:

Theorem 3. Assume that \(\{ c_n \} \) satisfies (1), and let \(g(t) \) be a function in the \(L_2(\mathbb{R}) \) closure of \(S \). Let \((a_i, b_i) \) be a bounded interval, assume \(g(t) \) is continuous thereon, and let \(d_n \) denote the uniform distance from \(g(t) \) to the span of \(\{ f_r(t); r = 0, \ldots, n \} \) in \((a_i, b_i) \). Then for any number \(\delta, 0 < \delta < \alpha \), there are numbers \(D \) (independent of \(n \) and \(g \)) and \(\gamma \) (independent of \(n \)), such that \(d_n < D \|g\|_{L_2(\mathbb{R})} \exp(-\delta \gamma) \).
We shall use the following notation: By $\Sigma^{(k)}$ and $\Pi^{(k)}$ we shall denote sums and products of the form indicated, kth term deleted. For the theory of entire functions we shall refer to the book by R. P. Boas, Jr. [8].

Proof of Lemma. We shall only consider the case in which $c_n \neq 0$ for all n, the other case being similar. Let $r_k(z) = \Pi^{(k)}(1 - z^2/c_n^2)$, and $\mu > 0$. As in the proof of [5, p. 33, Lemma 7.2] (with $h_n = c_n^2$), we see that the sequence $\{\exp[(\mu/4)c_n^2]|r_k(c_n)\}$ is bounded away from zero, say

$$\exp[(\mu/4)c_n^2]|r_k(c_n)| > D > 0. \quad (2)$$

Clearly $r_k(z) = P_k(z)P_k(-z)$, where

$$P_k(z) = \prod^{(k)}(z/c_n, 1) = \prod^{(k)}(1 - z/c_n) \exp(z/c_n).$$

If $n_k(r)$ denotes the number of elements in the sequence $\{c_n, n \neq k\}$ within the disk of radius r, and $n(r)$ is similarly defined for the whole sequence $\{c_n\}$, it is clear that $n_k(r) \leq n(r)$. In view of this inequality, setting $|z| = r$ and applying to $P_k(z)$ the same technique employed in the proof of [8, pp. 29–30, 2.10.13], we readily see there is a function $u(r)$ (the same for all k), such that $\lim_{r \to \infty} u(r) = 0$, and

$$|r_k(z)| < \exp[u(r)r^2] \quad (3)$$

for all complex z. Setting

$$q_k(z) = q_k(\mu, z) = (2\pi)^{-1/2} \exp[(\mu/4)(z^2 - c_n^2)]r_k(z)/r_k(c_n),$$

we see that

$$q_k(-c_n) = (2\pi)^{-1/2} \delta_{kn}. \quad (4)$$

In view of (2) and (3), a straightforward computation shows that

$$\int_R |q_k(x + yi)|^2 dx < d_1^2 \exp[(\mu)(y^2 + c_n^2)],$$

$$\int_R |(x + yi)q_k(x + yi)|^2 dx < d_2^2 \exp[(\mu)(y^2 + c_n^2)],$$

where d_1 and d_2 are independent of k (they are, of course, dependent on μ). Proceeding as in the proof of the necessity part of Theorem 3 in [1, pp. 304–305], we conclude that $q_k(z)$ is the Fourier transform of a function $h_k(t) = h_k(t, \mu)$ (i.e. $q_k(z) = (2\pi)^{-1/2} \int_R h_k(t) \exp(zt) dt$), such that $h_k(t)$ is continuous, and (for t real),

$$|h_k(t)| < d \exp[- t^2/(2\mu) + \mu c_n^2], \quad (5)$$

where d is independent of k. Let $\mu < 1/(2b)$. Then, if $m_k(t) = m_k(t, \mu) = h_k(t)/F(t)$, and bearing in mind that $h(t) = \exp(-bt^2)/F(t)$ is in $L_2(R)$ by hypothesis, it is clear from (5) that

$$|m_k(t)| < d \exp[- (1/(2\mu) - b)t^2 + \mu c_n^2]h(t). \quad (6)$$

Let $p_k(t)$ be the inverse Fourier transform of $m_k(t)$. By Plancherel’s formula and (6), we see that

$$\int_R |p_k(t)|^2 dt = \int_R |m_k(t)|^2 dt < c^2 \exp(2\mu c_n^2), \quad (7)$$

where c is independent of k.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
From Plancherel's formula and (5), we also see that
\[
\int_R p_k(t)f_n(t)\,dt = \int_R p_k(t)f(c_n - t)\,dt = \int_R m_k(t)F(t)\exp(-c_n t)\,dt \\
= \int_R h_k(t)\exp(-c_n t)\,dt = (2\pi)^{1/2}q_k(-c_n) = \delta_{kn}.
\]
We have thus shown that
\[
b_k(f_n) = \delta_{kn}. \tag{8}
\]
Let \(g(t)\) be a function in \(L_2(R)\). Applying the Cauchy-Schwartz inequality and (7), we see that
\[
|b_n(g)f(c_n - t)| \leq c\|g\|_{L_2(R)} \exp\left[\mu c_n^2 - \alpha(c_n - t)^2\right].
\]
Let \(\delta\) be any number such that \(0 < \delta < \alpha\). Setting \(\mu = \alpha - \delta - \epsilon\), where \(0 < \epsilon < \alpha - \delta\), we see that \(\mu c_n^2 - \alpha(c_n - t)^2 = -\delta c_n - \epsilon(c_n - t)^2 + \gamma t^2\), whence we conclude that for this value of \(\mu\),
\[
|b_n(g)f(c_n - t)| \leq c\|g\|_{L_2(R)} \exp(-\delta c_n^2 + \gamma t^2), \tag{9}
\]
whence we readily conclude that
\[
|S(g, t)| \leq M(t)\|g\|_{L_2(R)}, \tag{10}
\]
where \(M(t) = c\exp\gamma t^2 \sum \exp(-\delta c_n^2)\), and the conclusion follows from (6), (8), (9) and (10). Q.E.D.

Proof of Theorem 1. Assume that \(g(t)\) is in the \(L_2(R)\) closure of \(S\). Let \(\{g_n\}\) be a sequence of elements of \(S\) that converges to \(g(t)\) in the \(L_2(R)\) distance. Taking if necessary a subsequence thereof, we can assume without loss of generality that \(\{g_n\}\) converges to \(g(t)\) a.e. in \(R\).

From (8) we readily conclude that \(S(g_n, t) = g_n(t)\). Applying (10), we thus see that
\[
|g_n(t) - S(g, t)| = |S(g_n, t) - S(g, t)| \\
= |S(g_n - g, t)| \leq M(t)\|g_n - g\|_{L_2(R)}. \tag{11}
\]
Thus \(S(g, t) = \lim_{n \to \infty} g_n(t)\), and therefore \(g(t) = S(g, t)\), a.e., whence the conclusion follows. Q.E.D.

Proof of Theorem 2. Assume first that \(|c| \neq |c_n|\) for all \(n\). Since the sequence \(\{c_n\}\) diverges, there is a number \(k\) such that \(|c_k| < |c| < |c_{k+1}|\). Let \(d_n = c_n\) if \(n < k\), \(d_k = c\), and \(d_n = c_{n+1}\) if \(n > k\). Clearly (1) is also satisfied (with the same \(p\)) by the sequence \(\{d_n\}\). Let \(r(z) = \prod(1 - z^2/c_n^2)\), and \(P(z) = \prod^{(k)}(1 - z^2/d_n^2)\). Clearly, \(r(c) = (1 - c^2/c_k^2)(1 - c^2/c_{k+1}^2)P(c)\). Let \(\mu > 0\); inspection of the proof of [5, p. 33, Lemma 7.2] shows that
\[
\exp\left[\left(\mu/4\right)c^2\right]P(c) = \exp\left[\left(\mu/4\right)c^2\right]P(d_k) \geq D > 0
\]
(where \(D\) is independent of \(c\)), and therefore
\[
|r(c)| > m^2D. \tag{12}
\]
Let \(q(z) = q(\mu, z) = \exp[-(\mu/4)z^2]r(z)\), and \(0 < \mu < 1/(2b)\). Proceeding again as in [1, pp. 304–305], we see that
\[
q(z) = (2\pi)^{-1/2} \int_R m(t)F(t) \exp(zt) \, dt,
\]
where \(m(t) = m(\mu, t)\) is such that \(|m(t)| < d \exp[-(1/(2\mu) - b)t^2]h(t)\), and \(h(t) = \exp(-br^2)/|F(t)|\) is in \(L_2(R)\); thus the \(L_2(R)\) norm of \(m(t)\) is independent of \(c\). Since \(q(-c_n) = 0\), it readily follows from [9, p. 337, (V. 75)], that
\[
|q(c)| = \left| \int_R m(t)F(t) \exp(ct) \, dt \right| < d\|m\|_{L_2(R)}.
\]
Since \(\mu < 1/(2b)\), and (12) implies that \(|q(c)| > Dm_2^2 \exp[-(\mu/4)c^2]\), the conclusion follows. If \(|c| = c_k\) for some \(k\), define \(d_n = c_n\) if \(n \neq k\), and \(d_k = c = -c_k\). Thus if \(r(z)\) is defined as above, \(r(z) = (1 - z/c) \prod^{(k)}(1 + z/d_n)\), and therefore \(r(c) = 2 \prod^{(k)}(1 + d_k/d_n)\). Since the sequence \(\{d_n\}\) satisfies (1), the conclusion follows as above. Q.E.D.

Proof of Theorem 3. Let \(g(t)\) be a function in the \(L_2(R)\) closure of \(S\). From Theorem 1 we know that \(g(t) = S(g, t)\) a.e. on \(R\). However, it is readily seen from (9) and the continuity of the functions \(f_r(t)\), that \(S(g, t)\) is continuous on \(R\), and therefore identical with \(g(t)\) on \((a, b)\). Thus,
\[
g(t) = \sum_{r=0}^{\infty} b_r(g)f_r(t) \tag{13}
\]
thereon. From (9) and (1) we know that if \(t\) is in \((a, b)\), and \(\eta^2 = \sup\{a^2, b^2\}\), then
\[
|b_r(g)f_r(t)| < c\|g\|_{L_2(R)} \exp(\gamma r^2) \exp(-\delta c^2)
\leq c\|g\|_{L_2(R)} \exp(\gamma r^2 + c_0^2) \exp(-\delta r^2). \tag{14}
\]
Combining (13) and (14) we have
\[
d_n < |g(t) - \sum_{r=0}^{n} b_r(g)f_r(t)| < \sum_{r=n+1}^{\infty} |b_r(g)f_r(t)|
< Q\|g\|_{L_2(R)} \sum_{r=n+1}^{\infty} \exp(-\delta r^2)
= Q\|g\|_{L_2(R)} \left[\exp(-\delta r^2) / (1 - \exp(-\delta r)) \right],
\]
whence the conclusion follows. Q.E.D.

References

Department of Mathematics, Auburn University, Auburn, Alabama 36830