ON THE DIMENSION OF INJECTIVE BANACH SPACES

S. ARGYROS

Abstract. The purpose of this note is to give an affirmative answer, assuming the generalized continuum hypothesis, to a problem of H. Rosenthal on the cardinality of the dimension on injective Banach spaces.

The problem in question is contained in [4, Problem 7.a]; in this connection we prove the following result.

Theorem 1. Assume the G.C.H. If X is an infinite dimensional injective Banach space with dim X = \(\alpha \), then \(\alpha^\omega = \alpha \).

We start with some preliminaries.

We denote cardinals by \(\alpha, \beta \); \(\omega \) denotes the cardinality of natural numbers. We denote by \(\alpha^\omega \) the cardinality of the family of countable subsets of \(\alpha \). For a cardinal \(\alpha \), we denote by \(\text{cf}(\alpha) \) the least cardinal \(\beta \) such that \(\alpha \) is the cardinal sum of \(\beta \) many cardinals, each smaller than \(\alpha \). A cardinal \(\alpha \) is regular if \(\alpha = \text{cf}(\alpha) \), and singular if \(\text{cf}(\alpha) < \alpha \). The least cardinal strictly greater than \(\beta \) is denoted by \(\beta^+ \). The cardinality of a set \(A \) is denoted by \(|A| \). The generalised continuum hypothesis (G.C.H.) is the statement that \(\alpha^+ = 2^\alpha \) for all infinite cardinals \(\alpha \).

A real Banach space \(X \) is injective if for every Banach space \(Y \) and every bounded linear isomorphism \(T: X \to Y \), there is a bounded linear projection \(P: Y \to T(X) \). If \(\Gamma \) is a set, we denote by \(I^1(\Gamma) \) the Banach space of real-valued functions on \(\Gamma \) which are absolutely summable. If \(X \) is a Banach space we denote with \(\text{dim} \ X \) the least cardinal \(\alpha \) such that there is a family \(F = \{ x_\xi : \xi < \alpha \} \) of elements of \(X \) with the property that \(X \) is the closed linear span of \(F \).

Lemma 2. Let \(X \) be an injective Banach space with \(\text{dim} \ X = \alpha \). Then \(I^1(\alpha) \) is isomorphic to a subspace of \(X^* \).

Proof. Since \(X \) is a complemented subspace of \(C(S) \) for some compact space \(S \), \(X^* \) is a complemented subspace of \(L^1(\lambda) \) for some measure \(\lambda \). So the conclusion is a direct consequence of Theorem 2.5 of [3].

Proof of Theorem 1. Let us assume that the conclusion is false. Then there is an injective Banach space \(X \) with \(\text{dim} \ X = \alpha \) and \(\alpha^\omega > \alpha \). Under the G.C.H., \(\alpha^\omega > \alpha \) means that \(\text{cf}(\alpha) = \omega \) and since \(I^\infty(\mathbb{N}) \) is isomorphic to a subspace of \(X \) [5] it follows that \(\alpha > \text{cf}(\alpha) \).

We choose a sequence \(\{ \alpha_\xi : \eta < \omega \} \) of regular cardinals such that \(\alpha_1 = \omega^+ \), \(\alpha_{\eta + 1} > 2^\omega \) and \(\sum_{\eta < \omega} \alpha_\eta = \alpha \).

Received by the editors December 7, 1978 and, in revised form, March 16, 1979.

AMS (MOS) subject classifications (1970). Primary 46B05; Secondary 06A40.

© 1980 American Mathematical Society
0002-9939/80/0000-0076/01.00

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
From Lemma 2 there is a family \(\{ e_\xi : \xi < \alpha \} \) of elements of the unit ball of \(X^* \) equivalent to the canonical basis for \(l^1(\alpha) \).

Let, also, \(\{ x_\xi : \xi < \alpha \} \) be a norm dense subset of \(X \). Using finite induction we choose a family \(\{ A_\eta : \eta < \omega \} \) of subsets of \(\alpha \) such that:

(i) \(A_\eta \subset \{ \xi : \alpha_\eta < \xi < \alpha_{\eta+1} \} \),
(ii) \(|A_\eta| > 2 \), and
(iii) for \(\eta < \omega \) and \(\xi_1, \xi_2 \in A_\eta \)

\[e_\xi(x_\xi) = e_\xi(x_\xi) \text{ for all } \xi < \alpha_\eta. \]

For every \(\eta < \omega \) we choose \(\xi_1^\eta \neq \xi_2^\eta \) elements of \(A_\eta \), and we set \(e_\eta = e_{\xi_1^\eta} - e_{\xi_2^\eta} \). Then the sequence \(\{ e_\eta : \eta < \omega \} \) converges weak* to \(0 \in X^* \), and since \(X \) is injective, \(\{ e_\eta : \eta < \omega \} \) is in fact weakly convergent [2]. On the other hand, \(\{ e_\eta : \eta < \omega \} \) is equivalent to the usual basis for \(l^1(\mathbb{N}) \), a contradiction.

Remark 1. As the referee has remarked, the proof shows immediately the following more general statement:

If \(X \) is an \(\mathcal{C}_\omega \) Grothendieck space, then under the G.C.H. we have \((\dim X)^\omega = \dim X \). (Recall that a Banach space \(X \) is a Grothendieck space if every sequence in \(X^* \) which is weak* convergent necessarily converges weakly.)

Remark 2. We do not know what happens without any set-theoretical assumption. In this direction we proved in [1] the following.

Theorem A. If \(X \) is an injective Banach space in which each weakly compact subset is separable and \(\dim X = \alpha \) then \(\alpha^\omega = \alpha \).

Theorem B. Let \(\alpha \) be a cardinal and \(X \) be an injective Banach space such that \(l^1(\alpha) \) is isomorphic to a subspace of \(X \). Then \(X \) contains isomorphically a copy of \(l^1(\alpha^\omega) \).

References

1. S. Argyros, Weak compactness in \(L^1(\lambda) \) and injective Banach spaces (to appear).