BOUNDARY PRESERVING MAPS OF 3-MANIFOLDS

G. A. SWARUP

Abstract. We prove an extension of Waldhausen’s theorem [5] conjectured by Hempel in [3].

We prove the following extension of Waldhausen’s theorem [5]:

Theorem 1. Let M, N be P^2-irreducible 3-manifolds. Suppose that M is compact, sufficiently large and $f : (M, \partial M) \to (N, \partial N)$ is a continuous map inducing an injection $f_* : \pi_1(M) \to \pi_1(N)$. Then, there is a proper homotopy $f_t : (M, \partial M) \to (N, \partial N)$ such that $f_0 = f$ and either

(i) $f_t : M \to N$ is a covering map, or

(ii) M is an I-bundle over a closed surface, and $f_1(M) \subset \partial N$, or

(iii) N (hence also M) is a solid torus or a solid Klein bottle and $f_1 : M \to N$ is a branched covering with branch set a circle, or

(iv) M is a cube with handles and $f_1(M) \subset \partial N$.

If $f|B : B \to C$ is already a covering map, we may assume $f_t|B = f|B$, for all t (where B is any component of ∂M and C the component of ∂N containing $f(B)$).

This theorem is conjectured in [3], where it is proved under additional restrictions. When M, N are orientable and f_* is an isomorphism, a variant of this result is proved by Evans in [2]. Our argument yields a simple proof of his result too. We refer to [1] and [4] for the concepts ‘geometric degree’, ‘absolute degree’, ‘orientation-true’, etc. The term ‘degree of a map f’ will be used for the twisted degree of f and will be denoted by $\text{deg } f$ as in [4].

Lemma 2. Let M be a compact irreducible 3-manifold and let $f : (M, \partial M) \to (N, \partial N)$ be a map into any aspherical 3-manifold such that $f_* : \pi_1(M) \to \pi_1(N)$ is injective. Let S be a component of ∂M, S' the component of ∂N containing $f(S)$. If the geometric degree of $(f|S) : S \to S'$ is zero, then M is a cube with handles and f is properly homotopic to a map into ∂N.

Remark. If $(f|S)_* : \pi_1(S)$ is free subgroup of $\pi_1(S')$, then the geometric degree of $f|S$ is zero.

Proof. Since the geometric degree of $(f|S)$ is zero, $(f|S)$ is homotopic to a map of S into $S' - p$ for any $p \in S'$. Hence $(f|S)_* : \pi_1(S) = H$ is a finitely generated free subgroup of $\pi_1(S' - p)$. Representing H by the fundamental group of a wedge X of circles, we can write $(f|S)$, up to homotopy, as a composite $S \to X \to S' - p$.

Received by the editors September 22, 1978 and, in revised form, February 12, 1979.

Key words and phrases. Boundary preserving maps, geometric degree, twisted degree, homeomorphism.
Making \(g \) transverse to a point of \(X \) (\(\neq \) base point of \(X \)) we can find a nontrivial simple loop \(l \) in \(S \) such that \(g(l) \) is null-homotopic in \(X \) and hence \(f(l) \) is null-homotopic in \(S' - p \). Since \(f_*: \pi_1(M) \to \pi_1(N) \) injective, \(l \) bounds a disc \(D \) in \(M \). Split \(M \) along \(D \) to obtain \(M_1, M_2 \) (one of which may be empty) and maps \(g_i: M_i \to N \). Since \(f(l) \) is null-homotopic in \(S' - p \) and since \(N \) is aspherical we may assume that \(g_i \) maps \((M_i, \partial M_i) \) to \((N, \partial N) \), \(i = 1, 2 \). If \(S_i \) is the component of \(\partial M_i \) obtained from \(S \), \(g_i \) maps \(S_i \) into \(S' - p \) and therefore the degree of \((g_i|S_i) \) is zero. Induction completes the proof of Lemma 2.

The following two lemmas follow easily from [1] and [4]; we sketch the proofs:

Lemma 3. Let

\[
\begin{array}{ccc}
(M, \partial M) & \xrightarrow{j} & (N, \partial N) \\
p \downarrow & & \downarrow q \\
(M, \partial M) & \xrightarrow{f} & (N, \partial N)
\end{array}
\]

be a commutative diagram, where \(p, q \) are covering projections with the same finite number of sheets and \(f_*: \pi_1(M) \to \pi_1(N) \) is surjective. Then the geometric degree of \(f \) is equal to the geometric degree of \(\tilde{f} \).

Proof. Let \(G(f), A(f) \) and \(a(f, 2) \) denote the geometric degree, absolute degree, and the mod 2 degree of \(f \) and similarly for \(\tilde{f} \). By a theorem of Hopf (see [1]), \(G(f) = A(f) \). By Theorem 3.1 of [1], \(A(f) = a(f, 2) \) mod 2. From the definition of geometric degree it is immediate that \(G(f) \geq G(\tilde{f}) \) and \(G(f) = G(\tilde{f}) \) mod 2. This together with the above assertions implies that \(G(f) = G(\tilde{f}) \) if \(G(f) < 1 \). Hence, it remains to consider the case when \(G(f) > 1 \). From the classification into three types used in defining absolute degree (see [1, p. 371] and [4, p. 375]), if \(f \) is of type II or III, then \(G(f) = A(f) \) \(< 1 \). Since \(G(f) > 1 \), \(f \) has to be of type I and hence it is orientation-true. In this case, by Theorem VIII of [4], \(A(f) = |\deg f| \). By Lemma 3.6 of [4],

\[
|\deg f| |\deg p| = |\deg (f\tilde{p})| = |\deg (q\tilde{f}^\ast)| = |\deg q| |\deg \tilde{f}|.
\]

Since, by assumption \(|\deg p| = |\deg q| \), we have \(|\deg f| = |\deg \tilde{f}| \) and therefore \(G(f) = G(\tilde{f}) \) in the last case too.

Lemma 4. Let \(f: (M, \partial M) \to (N, \partial N) \) be a map inducing isomorphisms in the fundamental groups. If the geometric degree of \(f \) is nonzero, then \(f_*: \pi_1(M) \to \pi_1(N) \) is orientation-true (and the modulus of the degree of \(f \) is equal to the geometric degree of \(f \)).

Proof. Since \(G(f) \neq 0 \) and since \(f \) has no kernel, \(f \) is of type I and hence is orientation-true. Hence \(G(f) = |\deg f| \) by Theorem VIII of [4].

Lemma 2 is what is needed to extend the argument of [3] to the general case; we will quickly sketch the proof along the lines of proof of Theorem 13.6 of [3].
Proof of Theorem 1. Since we are not assuming that N is compact, the theorem will follow from the case when f_* is an isomorphism. From now on we will assume that f_* is an isomorphism. We will show that either (ii) or (iii) or (iv) of Theorem is valid or f is orientation-true and the degree of f is ± 1. Then by the extension of Lemma 3.1 of [2] to the nonorientable case, Theorem 1 follows.

By Lemma 2, either (iv) is valid or $(f|S)_* : \pi_1(S) \to \pi_1(S')$ has nonzero geometric degree for each component S of ∂M; here S' denotes the component of ∂N containing $f(S)$. In the latter case $(f|S)_* \pi_1(S)$ is a subgroup of finite index in $\pi_1(S')$. Thus, if two components S, T of ∂M map into S', then $(f|S)_* \pi_1(S)$ and $(f|T)_* \pi_1(T)$ intersect in a subgroup of finite index. Now one sees as in [3], that M is a product I-bundle and (ii) is valid. Thus, either (iv) or (ii) is valid or f satisfies

(p.1) $(f|S)_* \pi_1(S)$ is of finite index in $\pi_1(S')$ where S is any component of ∂M and S' is the component of ∂N containing $f(S)$; and

(p.2) the map $\pi_0(\partial M) \to \pi_0(\partial N)$ induced by f is injective.

From now on we will assume that f satisfies (p.1) and (p.2). Construct a commutative diagram

$$
\begin{array}{ccc}
\overline{M} & \xrightarrow{f} & \overline{N} \\
\downarrow \rho & & \downarrow \varrho \\
M & \xrightarrow{f} & N
\end{array}
$$

when \overline{M}, \overline{N} are orientable and ρ, ϱ are finite covers of the same degree < 4. Since f satisfies (p.1), \overline{f} also satisfies (p.1). If \overline{f} does not satisfy (p.2), it follows as above that \overline{M} is a product I-bundle. Since \overline{M}, \overline{N} are orientable, \overline{N} is also a product I-bundle and \overline{f} can be properly deformed into $\partial \overline{N}$. Since f satisfies (p.2), it follows that M is a nontrivial I-bundle and that $f_*(\pi_1(M))$ is peripheral in N. Hence f can be properly deformed into ∂N. Hence either (ii) holds or \overline{f} satisfies (p.1) and (p.2). Thus, we see that either (iv) or (ii) holds or both f and \overline{f} satisfy (p.1) and (p.2). In the later case we choose local orientations for M, N and orient \overline{M}, \overline{N} accordingly. Since \overline{f} satisfies (p.1), (p.2) and since \overline{M}, \overline{N} are orientable, we see that the degree of \overline{f} is nonzero. If $\chi(M) \neq 0$, then $\chi(\overline{M}) \neq 0$ and the degree of \overline{f} has to be ± 1 (see the argument [3, pp. 146–147]). Now Lemmas 3 and 4 show that the degree of f is ± 1 and by the extension of Lemma 3.1 of [2], $f|\partial M$ can be deformed to a homeomorphism. Hence f can be deformed to a homeomorphism as in [3] and (i) holds. It remains to consider the case when $\chi(M) = \chi(\overline{M}) = 0$ and $\deg f \neq \pm 1$. We claim that \overline{S} is compressible in \overline{M}. Otherwise, since the degree of $(\overline{f}|\overline{S})_* \pi_1(\overline{S})$ is a proper rank two subgroup of $\pi_1(\overline{f}(\overline{S}))$ and it follows that \overline{M}, \overline{N} are nontrivial I-bundles. In this case $(\overline{f}|\overline{S})_*$ has to be an isomorphism. This contradiction shows that \overline{S} is compressible in \overline{M} and it follows as in [3] that (iii) holds. This completes the proof of Theorem 1.
REFERENCES

5. F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. 87 (1968), 56–88.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India