THE CLOSED SOCLE OF AN AZUMAYA ALGEBRA

F. R. DEMEYER

Abstract. If R is a Noetherian ring and A is an Azumaya algebra over R then an ideal $H(A)$ in R, called the closed socle of A, is defined and it is shown that $H(A)$ is independent of the representative A in the Brauer group of R. When R is a domain, the behavior of $H(A)$ under localization and passage to the quotient field is studied, and $H(A)$ is calculated when R is the affine ring of a real curve.

Let R denote a Noetherian, integrally closed domain and A an Azumaya (central separable) algebra over R. In [6], D. Haile associated to A an ideal in R which he called the closed socle of A and which we denote $H(A)$. In this note we show how to define the closed socle of an Azumaya algebra over any commutative Noetherian ring, give simplified proofs of results slightly more general than those in [6], and calculate the closed socle of an Azumaya algebra over the affine ring of a real curve. More specifically, if R is a commutative Noetherian ring and A is an Azumaya algebra over R then $H(A)$ is defined and is independent of the choice of representative A in its class in the Brauer group $B(R)$ of R. If R is a local Noetherian domain with quotient field F and maximal ideal m and $2 = A \otimes F$, then $\text{Index}(\Sigma) > \text{Index}(A/mA)$ when $H(A) = R$. Thus, if $\Sigma = M_\omega(F)$ then $H(A) = R$ if and only if $A = M_\omega(R)$. Also, if A/mA is a division algebra then A is a maximal order in a division algebra over F when $H(A) = R$. A localization result is proved and consequences of these results for Noetherian domains are derived. If R is the affine ring of a real curve X and A is an Azumaya algebra over R then $H(A) \subseteq \cap P_x$ where P_x is the prime ideal in R corresponding to a point $x \in X$ and x runs over the singular points $x \in X$ which are isolated in the strong topology and for which A/P_xA is not in the trivial class of $B(R/P_x)$. Throughout all unexplained terminology and notation is as in [4], and \otimes always means \otimes_R.

1. We begin by extending the definition of the closed socle given in [6]. Let R be a domain with quotient field F, let A be an Azumaya algebra over R, and let $\Sigma = A \otimes F = A \cdot F$. A left ideal L in A is pure over R in case $ra \in L$ for $0 \neq r \in R$ and $a \in A$ implies $a \in L$ ([2, p.199]). It is easy to show that there is a one-to-one order preserving correspondence between the R-pure left ideals L in A and the left ideals L^1 in Σ by $L \rightarrow L \cdot F$ and $L^1 \rightarrow L^1 \cap A$. It follows that minimal pure left ideals exist in A. Let I be the sum of the minimal R-pure left ideals in A, then the closed socle of A is defined to be $I \cap R$ and is denoted $H(A)$. Observe that the set I in A is actually a two-sided ideal in A. It is clear that I is a left ideal in A, and for $a \in A$ and minimal pure left ideal L of A either $La = 0$ or

Received by the editors September 20, 1978 and, in revised form, March 21, 1979.

© 1980 American Mathematical Society
0002-9939/80/0000-0100/$02.25

299

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
(La)\(F = (LF)a\) is a minimal left ideal of \(\Sigma\), since \(La \subseteq (LF)a \cap A\) and \((LF)a \cap A\) is a two-sided ideal in \(A\). By the one-to-one correspondence between two-sided ideals of \(A\) and \(R\) ([4, 3.7, p. 54]) it follows that \(I = A \cdot H(A)\). This corresponds to the construction of the closed socle for normal domains given in [6].

Now assume \(R\) is a reduced Noetherian ring. Then \((0) = \bigcap \mathfrak{p}_i\), where the \(\mathfrak{p}_i\) are a uniquely determined set of prime ideals so that the intersection is irredundant. If \(A\) is an Azumaya algebra over \(R\) let \(A_i = R/\mathfrak{p}_i \otimes A\), then \(A_i\) is an Azumaya algebra over the domain \(R/\mathfrak{p}_i\). From the above \(H(A_i)\) is an ideal in \(R/\mathfrak{p}_i\) whose natural inverse image is an ideal \(I_i\) in \(R\). We define the closed socle \(H(A)\) of \(A\) to be \(\bigcap \mathfrak{p}_i I_i\). If \(R\) is just a commutative Noetherian ring let \(N\) be the nil radical of \(R\), and let \(A\) be an Azumaya algebra over \(R\). Above we defined \(H(A/NA)\) in \(R/N\). We define the closed socle \(H(A)\) of \(A\) to be the natural inverse image of \(H(A/NA)\) in \(R\). The calculation of the closed socle of an Azumaya algebra over the affine ring of a real curve given later illustrates the naturalness of this definition.

Lemma 1. Let \(R\) be a domain and \(P\) a prime ideal in \(R\). Let \(A\) be an Azumaya algebra over \(R\), then \(H(R_P \otimes A) = R_P \otimes H(A)\) where \(R_P\) denotes the localization of \(R\) at \(P\).

Proof. One can check that there is a one-to-one correspondence between the minimal pure left ideals \(L\) of \(A\) and the minimal pure left ideals \(L^1\) of \(R_P \otimes A = A R_P\) by \(L \rightarrow LR_P\) and \(L^1 \rightarrow A \cap L^1\). Let \(I\) be the sum of the minimal pure left ideals of \(A\) and \(I^1\) the sum of the minimal pure left ideals in \(A^1\). Then \(I \cdot R_P = \Sigma LR_P\) where \(L\) runs through the minimal pure left ideals in \(A\). Thus \(IR_P = I^1\).

Now one can check that \(H(A)R_P = H(R_P \otimes A)\).

We note here that if \(S\) is a commutative \(R\)-algebra and \(A\) is an Azumaya \(R\)-algebra it may not be the case that \(H(S \otimes A) = S \otimes H(A)\). For example let \(R\) denote the field of real numbers, let \(R = R[x, y]/(x^2 + y^2)\) and let \(S\) be the integral closure of \(R\). We later show that if \(A\) is the Azumaya algebra generated by elements \(i, j\) subject to \(i^2 = j^2 = -1\) and \(ij = -ji\) and \(P\) is the maximal ideal in \(R\) generated by \(\{x, y\}\) then \(H(A) \subseteq P\); but \(H(S \otimes A) = S\) so \(S \otimes H(A) \neq H(S \otimes A)\).

Lemma 2. Let \(A\) and \(A^1\) be two Azumaya algebras in the same class of the Brauer group of the Noetherian ring \(R\), then \(H(A) = H(A^1)\).

Proof. Assume \(R\) is a local domain. Then there is an Azumaya \(R\)-algebra \(D\) with no idempotents other than 0 and 1 and positive integers \(n\) and \(k\) with \(A \cong M_n(D), A^1 = M_k(D)\) by Corollary 1 of [3]. In this case it suffices to show \(H(D) = H(M_n(D))\). Let \(F\) be the quotient field of \(R\) and \(\Sigma = F \otimes D = F \cdot D\). Then \(F \otimes M_n(D) = M_n(\Sigma)\). Let \(e_{ij}\) be the matrix in \(M_n(\Sigma)\) with 1 in the \(i, j\) entry and 0 elsewhere. Let \(L\) be a minimal pure left ideal in \(D\) so \(L^1 = \Sigma L\) is a minimal left ideal in \(\Sigma\). Then \(M_n(L) = \bigoplus \epsilon_{\mathfrak{m}_i} M_n(L)e_{ii}\) and \(M_n(\Sigma) \cdot M_n(L) = M_n(\Sigma) \cdot L = \bigoplus \epsilon_{\mathfrak{m}_i} M_n(\Sigma L)e_{ii}\). Moreover, since \(L\) is \(R\)-pure in \(\Sigma\), \(M_n(L)e_{ii}\) is \(R\)-pure in \(M_n(\Sigma)\) so \(M_n(\Sigma L)e_{ii} \cap M_n(D) = M_n(L)e_{ii}\). Finally, \(M_n(\Sigma L)e_{ii}\) is a minimal left ideal in \(M_n(\Sigma)\) since \(\Sigma \cdot L\) is a minimal left ideal in \(\Sigma\). Thus
\[M_n(L) = M_n(\Sigma L) \cap M_n(D) = \left(\bigoplus_{i=1}^{n} M_n(\Sigma L)e_{ii} \right) \cap M_n(D) \]
\[\supseteq \bigoplus_{i=1}^{n} M_n(\Sigma L)e_{ii} \cap M_n(D) = \bigoplus_{i=1}^{n} M_n(L)e_{ii} = M_n(L). \]

Thus \(M_n(L) \) is contained in the sum of the minimal pure left ideals in \(M_n(D) \) so \(H(D) \subseteq H(M_n(D)) \). For the reverse inclusion let \(I \) be the sum of the minimal pure left ideals \(L \) of \(D \). Let \(J' \) be the sum of minimal pure left ideals in \(M_n(D) \). By 3.5, p. 22 in [4] we know \(J' = M_n(J) \) for some two-sided ideal \(J \) in \(D \). We have already shown \(I \subseteq J \). Let \((x_{ij}) \) be an \(n \times n \) matrix in \(M_n(D) \) with \((x_{ij}) \notin M_n(I) \) yet \((x_{ij}) \in L_1 \) for some minimal pure left ideal \(L_1 \) of \(M_n(D) \). If \(x_{ij} \notin I \) then \((e_{ij})(x_{ij})(e_{ij})\) is contained in \(M_n(D) \) and in the minimal left ideal \(L'e_{ij} \). Thus if \(x_{ij} \) is the matrix whose \(ij \)th entry is \(x_{ij} \) and all others are 0 then \(x_{ij} \notin L'e_{ij} \cap M_n(D) \) is in a minimal pure left ideal in \(M_n(D) \), so \(M_n(\Sigma)X_{ij} \) is a minimal left ideal in \(M_n(\Sigma) \). Thus \(\Sigma x_{ij} \) must be a minimal left ideal in \(\Sigma \). Thus \(x_{ij} \in \Sigma x_{ij} \cap D \subseteq I \) which contradicts the choice of \(x_{ij} \).

Now let \(R \) be any commutative Noetherian ring with nil radical \(N \). If \(A \) is equivalent to \(A^1 \) in \(B(R) \) then \(A/N(A) \) is equivalent to \(A^1/N^1 \) in \(B(R/N) \) so it suffices to show \(H(A/N(A)) = H(A^1/N^1) \). Similarly, we can assume \(R \) is a domain for if we write (0) as the irredundant intersection of a unique set \(\{P_i\}_{i=1}^{m} \) of prime ideals and if \(H(A/P_iA) = H(A^1/P_iA^1) \) for all \(i \) then \(H(A) = H(A^1) \). If \(R \) is a Noetherian domain and \(P \) is any prime ideal in \(R \) we know \(R_P \otimes H(A) = R_P \otimes H(A^1) \) by the first part of the proof since \(R_P \otimes A \) is equivalent to \(R_P \otimes A^1 \) in \(B(R_P) \). Thus if \(H(A) = \bigcap_{i=1}^{m} P_i^\infty \) and \(H(A^1) = \bigcap_{i=1}^{m} P_i^\infty \) where \(\{Q_i\} \) is an irredundant collection of prime ideals and \(m_i > 0 \) then \(m_i = n_i \) for all \(i \) so we always have \(H(A) = H(A^1) \).

If \(A \) is an Azumaya algebra over a field \(F \) then the index of \(A \) is the square root of the dimension of the division algebra part of \(A \) over \(F \). The next result is a generalization (with an easier proof) of Theorem 4.6 of [6].

Theorem 1. Let \(R \) be a local Noetherian domain with maximal ideal \(m \) and quotient field \(F \). Let \(A \) be an Azumaya algebra over \(R \) and \(\Sigma = F \otimes A \). If \(H(A) = R \) then Index \(\Sigma > \) Index \(A/mA \). Moreover, if Index \(\Sigma = \) Index \(A/mA \) then \(A = M_n(B) \) where \(B \) is an Azumaya \(R \)-algebra such that \(F \otimes B \) is a division algebra.

Proof. Assume \(H(A) = R \). Then there is a minimal pure left ideal \(L \) of \(A \) with \(L \not\subseteq mA \). Let \(A_0 = \Sigma La \) where the sum runs over those \(a \in A \) such that \(La \not\subseteq mA \). Then \(A_0 \) is an \(R \)-submodule of \(A \) and \((A_0 + mA)/mA \) is a two-sided ideal in \(A/mA \). Since \(A/mA \) is simple, \((A_0 + mA)/mA = A/mA \), so by Nakayama's lemma, \(A_0 = A \). Therefore \(A = \Sigma La \) where the sum is taken over finitely many \(a \in A \) such that \(La \not\subseteq mA \). Let \(La = F \cdot La \). Then \(\Sigma = \bigoplus_{a=1}^{n} \Sigma La \). Thus \(A \supseteq \bigoplus_{a=1}^{n} \Sigma La \). Note that \((A_1 + mA)/mA = (La_1 + mA)/mA \otimes (La_1 + mA)/mA \) and each summand on the right is a nonzero ideal in \(A/mA \). This proves Index \(\Sigma > \) Index \(A/mA \). If Index \(\Sigma = \) Index \(A/mA \) then \((A_1 + mA)/mA = A/mA \) so by
Nakayama's lemma $A_1 = A$. Let $B^0 = \text{Hom}_A(La_1, La_1)$. Then B is an Azumaya algebra over R and $A = \text{Hom}_R(La_1, La_1) = M_n(B)$, with B a maximal order in the division algebra component of Σ.

Corollary 1. Let R be a local Noetherian domain with quotient field F, and let A be an Azumaya R-algebra. If $F \otimes A \cong M_n(F)$ then $A \cong M_n(R)$ if and only if $H(A) = R$.

Proof. If $A \cong M_n(R)$ then it is easy to see that $H(A) = R$ (this also follows from Lemma 2). Conversely, Index $F \otimes A = 1 > \text{Index } A/mA$ so the inequality is an equality and the result follows from Theorem 1.

Corollary 2. Let R be a Noetherian domain with field of quotients F. Suppose A is an Azumaya R-algebra with $F \otimes A \cong M_n(F)$. Let P be a prime ideal in R, then $R_P \otimes A \cong M_n(R_P)$ if and only if $H(A) \not\subseteq P$.

Proof. Combine Lemma 1 and Corollary 1.

Corollary 3. Let R and A be as in Theorem 1. If A/mA is a division algebra and $H(A) = R$ then $F \otimes A$ is a division algebra.

Proof. By Theorem 1, Index $F \otimes A > \text{Index } A/mA$ since $[\text{Index } A/mA]^2 = \text{Rank}_{R/m}(A/mA) = \text{Rank}_R(A) = \text{Rank}_F(F \otimes A) > [\text{Index } F \otimes A]^2$. Thus $[\text{Index } F \otimes A]^2 = \text{Rank}_F(A)$ and $F \otimes A$ is a division algebra.

Theorem 2. Let R be the affine ring of a real curve X. For each closed point $x \in X$ let P_x be the corresponding maximal ideal in R. Let A be an Azumaya R-algebra. Then the longest product of ideals P_x containing $H(A)$ has factors P_x satisfying all of the following.

1. x is a real singular point on X.
2. x is isolated in the strong topology on the real points of the irreducible component X_i of X containing x.
3. A/P_xA does not represent the trivial class in $B(R/P_x)$.

Proof. For each $x \in X$ let $R(x) = R/P_x$ and $A(x) = A/P_xA$. Since X is a real curve $R(x)$ is either the real or complex numbers. If $R(x)$ is the real number \mathbb{R} then either $A(x)$ is a matrix algebra over \mathbb{R} or $A(x)$ is a matrix algebra over the division algebra of real quaternions. In [5] the Azumaya algebras A over R are characterized as continuously parameterized systems of Azumaya algebras $A(x)$ over the real points $x \in X$ with the strong topology. If X is irreducible then R is a domain and the quotient field F of R is the field of rational functions on X. By Remark 3.4 of [5] the real points x for which $A(x)$ is a matrix algebra over the quaternions, yet $F \otimes_{R(x)} A(x)$ is a matrix algebra over F, are precisely the real singular points $x \in X$ which are isolated in the strong topology and for which $A(x)$ is a matrix algebra over the quaternions. Combining Theorem 1 and Lemma 1 we see that $A(x)$ is a matrix algebra over the quaternions yet $F \otimes A(x)$ is a matrix algebra over F if and only if P_x contains $H(A)$. If X is reducible we can assume R is reduced. Let $(0) = \cap P_i$, where $\{P_i\}$ is an irredundant set of prime ideals of R. The rings R/P_i are the affine rings of the irreducible components X_i of X. If
$A_i = R/P_i \otimes A$ then $H(A_i)$ is contained in the product of the maximal ideals which correspond to the real singular points x_i on X_i which are isolated in the strong topology on X_i and for which $A(x)$ is a matrix algebra over the quaternion algebra. This completes the proof of the theorem.

REFERENCES

Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523