Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Normal subgroups contained in Frattini subgroups are Frattini subgroups


Author: R. B. J. T. Allenby
Journal: Proc. Amer. Math. Soc. 78 (1980), 315-318
MSC: Primary 20D25
DOI: https://doi.org/10.1090/S0002-9939-1980-0553365-1
MathSciNet review: 553365
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that if N is a normal subgroup of the finite group G and if $ N \subseteq \Phi (G)$, then there exists a finite group U such that $ N = \Phi (U)$ exactly. In particular, we see that the generalizations apparent in the conclusions of several recently stated theorems are illusory.


References [Enhancements On Off] (What's this?)

  • [1] R. B. J. T. Allenby and C. Y. Tang, On the Frattini subgroups of generalized free products, J. Algebra 52 (1978), 460-474. MR 0480759 (58:911)
  • [2] W. Gaschutz, Über die $ \Phi $-Untergruppen éndlicher Gruppen, Math. Z. 58 (1953), 160-170. MR 0057873 (15:285c)
  • [3] W. Mack Hill and Donald B. Parker, The nilpotence class of the Frattini subgroup, Israel J. Mat. 15 (1973), 211-215. MR 0322058 (48:422)
  • [4] W. Mack Hill and Charles R. B. Wright, Normal subgroups contained in the Frattini subgroup, Proc. Amer. Math. Soc. 35 (1972), 413-415. MR 0301094 (46:252)
  • [5] A. G. Kurosch, Die Untergruppen der freien Produkte von beliebigen Gruppen, Math. Ann. 109 (1934), 647-660. MR 1512914
  • [6] B. H. Neumann, Ascending verbal and Frattini series, Math. Z. 69 (1958), 164-172. MR 0096735 (20:3218)
  • [7] W. R. Scott, Group theory, Prentice-Hall, Englewood Cliffs, N. J., 1964. MR 0167513 (29:4785)
  • [8] W. Specht, Gruppentheorie, Springer-Verlag, Berlin, 1956. MR 0080091 (18:189b)
  • [9] E. L. Stitzinger, A non-embedding theorem for finite groups, Proc. Amer. Math. Soc. 25 (1970), 124-126; Errata, Proc. Amer. Math. Soc. 34 (1972), 631. MR 0258936 (41:3581)
  • [10] H. Wielandt, Einbettung Zweier Gruppen in eine einfache Gruppe, Math. Z. 73 (1960), 20-21. MR 0124387 (23:A1699)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20D25

Retrieve articles in all journals with MSC: 20D25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1980-0553365-1
Keywords: Frattini subgroup, (generalized) free product, free group, wreath product, alternating group
Article copyright: © Copyright 1980 American Mathematical Society

American Mathematical Society